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Glossary of terms and abbreviations used

AF Application Function

AMF Access and Mobility Management Function
CCMF Cloud-Continuum Management Function
CRD Custom Resource Definition

DAG Directed Acyclic Graph

DNN Data Network Name

eBPF extended Berkeley Packet Filter

EdgeMF Edge-cloud Management Function

Faa$S Function-as-a-Service

GRU Gated Recurrent Unit

HPA Horizontal Pod Autoscaler

Maa$s Metal-as-a-Service

NEF Network Exposure Function

NRP Network Resource Partition

NSC Network Slice Controller

PCF Policy Control Function

SBA Service Based Architecture

SBI South-Bound Interface

SLO Service Level Objective

SMF Session Management Function

S-NSSAI Single — Network Slice Selection Assistance Information
TSD Time Series Database

ubm Unified Data Management

UPF User Plane Function

URSP UE Route Selection Policy

VIM Virtual Infrastructure Manager

VRF Virtual Routing and Forwarding

WIM Wide-Area Infrastructure Manager

XDP eXpress Data Path

NSI Network Slice instance

EGMF Exposure Governance Management Function
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NFMF Network Function Management Function
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CNF Containerized Network Function
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Executive Summary

This deliverable details the final version of the work realized within 6Green towards the specification of a set
of enabling technologies that are adopted towards the development of the 6Green Service Based
Architecture (SBA) in WP3, as well as towards the development of vertical application orchestration
mechanisms in WP4. It builds upon the results provided in the D3.2 that detailed the work in progress in the
implementation of these technologies in M18 of the project.

The set of enabling technologies include:

o network connectivity management and traffic offloading mechanisms,

e cloud-native orchestration mechanisms considering approaches that take advantage of service-mesh
techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps and
continuous automation principles,

e power management mechanisms for the core, transport and access part of the continuum by
considering serverless workloads,

e network slice lifecycle management and optimization techniques, including energy-aware network
slice management in O-RAN and multi-provider settings, and

e green observability and profiling mechanisms.

For all cases, the final status of the development of the enablers is provided. A mapping of the enabling
technologies with their adoption toward the development of the various functions of the 6Green SBA is also
detailed, while information for the developed software prototypes is made available in D2.4.
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1 Introduction

This document details the activities carried out in the Work Package 2 (WP2), “Green Enabling Technologies for
Cloud-Native Services” of the 6Green Project. The goal of the 6Green Project is to create an innovative, service-
based, and comprehensive ecosystem that expands the communication infrastructure into a sustainable,
interconnected, and greener end-to-end inter-computing system. It aims to promote energy efficiency across the
entire 5/6G value chain and reduce the carbon footprint of 5/6G networks and vertical applications.

The 6Green Project is structured around three main research axes, which correspond to three administrative
domains/layers within the architecture: the 5/6G Edge-Cloud Infrastructure, the Network Platform and the
Vertical Application domains. The corresponding research areas are referred to as “Enabling Technologies for
Cloud-Native Service Meshes,” “the 6Green Service-based Architecture,” and “Vertical Application Orchestration
within the 5/6G Green Economy.” These axes must closely collaborate to implement the holistic vision of 6Green.

WP2 primarily focused on the activities related to the first research axis of the project: “Green Enabling
Technologies for Cloud-Native Services.” Within WP2, the initial activities involved refining the architectural
definition of the 6Green ecosystem and validating use cases for the technologies and solutions developed by the
project. This includes identifying the roles of different stakeholders, determining system and use cases
requirements, and establishing key performance indicators for the identified use cases.

Following, effort was allocated into the development of a set of enabling technologies to boost green elasticity
(automatically, and rapidly provision, adapt, and de-provision network and (edge) computing resources/artefacts
and hardware offload engines to improve energy efficiency) and edge agility (transparently move
applications/services (or part of them) at run-time in different geographical areas of the edge-cloud continuum)
in the deployment of services and applications over a 6G infrastructure. These enabling technologies include
network connectivity management and traffic offloading mechanisms; cloud-native orchestration mechanisms
considering approaches that take advantage of service-mesh techniques, as well as automation mechanisms
based on infrastructure as a code, ZeroOps and continuous automation principles; power management
mechanisms for the core, transport and access part of the continuum by considering serverless workloads;
network slice lifecycle management and optimization techniques, including energy-aware network slice
management in O-RAN and multi-provider settings, and green observability and profiling mechanisms.

In the current document, the overall work towards the development of such enabling technologies is detailed.
The document builds upon the results provided in the D3.2 that detailed the work in progress in the
implementation of these technologies in M18 of the project. In all cases, the final status of the development of
the enablers is provided. A mapping of the enabling technologies with their adoption toward the development of
the various functions of the 6Green SBA is also detailed, while information for the developed software prototypes
is made available in D2.4.

Per enabling technology, the design of the mechanisms, the implementation status and evaluation results are
provided. With this objective in mind, this document is organized as follows. Section 2 details the connectivity and
traffic offloading enablers for managing data traffic to optimize performance, reduce congestion, and enhance
the user experience across resources in the computing continuum. Section 3 details enablers that support
orchestration actions for the management of cloud-native software, including enablers that support automation
in the management of compute and network infrastructure in 5G/6G environments. Section 4 details power
management and network slice lifecycle management techniques by considering serverless workloads. Section 5
details data fusion, profiling and observability mechanisms. Section 6 provides a short mapping of the detailed
enabling technologies with the 6Green Service-based Architecture (SBA), while Section 7 concludes the document.
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2 Connectivity and Traffic Offloading

2.1 Traffic Offloading to Hardware Acceleration-Based UPF by Control Plane
Service Exposure

Traffic offloading in 5/6G networks refers to the process of redirecting data traffic to alternative pathways
to optimize performance, reduce congestion, enhance the user experience, or change user plane technology.
Traffic offloading is a crucial feature for allowing Green Elasticity, as the energy-aware usage of hardware
accelerators cannot be applied unless traffic is redirected accordingly.

During the 6Green activities, traffic offloading has been designed and implemented through the development
of an evolved Network Exposure Function (NEF) prototype. Initially introduced in D2.2 and further detailed
in this section, the prototype is tailored specifically for the 6Green SBA. It implements the traffic offloading
mechanism in alignment with the 3GPP standard, particularly referencing TS 29.502 and TS 29.522 for the
API specifications. The traffic offloading procedure leverages the URSP rule modification applied within the
Service parameter provisioning service, as defined in D2.2. However, to better support the needs of 6Green,
this service has been extended and slightly adapted to offer greater flexibility for slice offloading, by working
on slice change for a set of UEs.

Unlike the approach described in Section 2.1.1 of D2.2, the service in 6Green is no longer referred to as
Nnef ServiceParameter. Instead, it has been evolved and renamed as Nnef_SliceOffloading, to more
accurately reflect its role of changing slice for specific UEs, within the 6Ggreen framework. In the next section,
further detail about the implementation is provided.

2.1.1 Slice Offloading Mechanism within the 5GC

The legacy 3GPP standardized Service Parameter provisioning mechanism in 5GS enables external entities to
supply service-specific parameters for single UE, facilitating its traffic steering. This is particularly effective
when combined with (AF)-guided URSP rules, which allow for tailored routing of third-party application
traffic. As described in the previous section, in the context of 6Green Project, this mechanism has been
enhanced to introduce dynamic traffic steering capabilities.

The innovation lies in the ability to incorporate new input parameters such as the originating network slice
or DNN, allowing multiple UEs belonging to such domains (S-NSSAI or DNN) to be moved from a slice to
another one. This is possible exploiting the availability of management APIs exposed by 5G Core Networks.
In this activity we utilized the HPE Aruba Networking Private 5GC, which provides dedicated provisioning APls
allowing configuration changes (e.g., slice assignment for UE profiles).

The developed Nnef_SliceOffloading service leverages some information coming from the CN and the actual
request from the service consumer.

Figure 2-1 illustrates the complete flowchart of the functional slice offloading procedure. The process
requires two main inputs: information from the client request (i.e., destSlicelist and target) and the
provisioning data from the core network (i.e., profileList and subscriberlList). The first step involves extracting
the actual destination slice (destSlice), and related provisioning profile (destProfile) among the candidate ones
included in destSlicelist. The second step focuses on identifying the target UE or set of UEs. Based on the
target type (GrouplD, Slice, supi, gpsi, ipv4) included in the request, the algorithm selects the appropriate
procedure to obtain the list of UEs (or a single UE) whose profiles need to be updated with the one including
the destination slice. If a UE already has a profile that includes the destination slice, it is simply excluded from
further processing.
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Figure 2-1: Flowchart representation of the Slice offloading procedure.
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2.1.2 Validation

The slice offloading procedure was evaluated using a single User UE. The tested Core Network was based on
the HPE Aruba Networking Private 5G Core (HPE 5GC).

The UE's data was provisioned in the 5GC and initially assigned to Profile 1, associated with Slice 1-000001.
A second profile (Profile 2) was configured and linked to Slice 1-000002. Each slice was mapped to a dedicated
UPF, enabling traffic redirection upon slice switching. UERANSIM was used to emulate both the gNB and the
UE, with the gNB configured to support both slices.

Phase 1: UE registration and PDU session establishment to Slice 1

As shown in Figure 2-2, the UE has been successfully connected to the initial Slice 1. A ping test was
performed to check the connectivity and traffic.

Access Management

GUTI HCGI

SE-puli-0010L00004 14444 162 C 001-01-000000020

TAl CM State

MM State

registered

5 Contexts

DHN PDU Session Id 5-NS5AI
ternel 1 1-000001

Figure 2-2: AMF information regarding UE connectivity status.

Phase 2: Execution of NEF and tools for interfacing with the 5GC

Figure 2-3 illustrates the execution of the software prototypes. On the right side, the NEF Python application,
including the SliceOffloading service, is show. On the left, the ProxyAPI component is depicted, acting as an
interface layer to communicate with the 5GC APIs.

The NEF application is configured to interact with the ProxyAPl when API access is required. The ProxyAPlI is
already bound to the 5G Core, as indicated by the green status confirmation.

/S\ath3gpp-proxyapi> python proxyapl S onzani\Vs > nef
* * (lazy loading)

Use a prod
* Debug mode
stening on ©.0.8.0:5844

* Running on all a
in

Press CTRL4C to quit

U

Figure 2-3: Terminal output with execution logs of ProxyAPI (left) and NEF prototype (right).
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Phase 3: Slice offloading request from client

The functional test proceeded with the execution of the slice switch request using Postman. The request
body (see Figure 2-4) includes the essential parameters required to trigger the slice transition:

e  GPSI, used to uniquely identify the target UE
e Route slice information, specifying the combination of DNN and S-NSSAI values, which will be
mapped to an available destination profile to be assigned to the UE.
These parameters were processed by the NEF application to initiate the slice offload procedure for the
selected UE.

1 i

2 "afServiceId”:"ims-voip-223",
3 "dgpsi":"@E3938@160@1211",

4 "routeslice": [

& i

i relatPrecedencs 1,
7 dnn "“internst”,

g snssai":

9 sst" i1,

1a sd": "pageaz”

1 :

12 1

13 ]

14 7

Figure 2-4: SliceOffload request bodly.

Phase 4: SliceOffloading procedure and results

Once the request was triggered, the SliceOffloading service executed the slice switching logic by interacting
with the 5G Core through the ProxyAPl component. Upon successful assignment of Profile 2 to the UE,
subsequent user traffic was redirected through the second UPF, as defined by the new slice configuration.

Figure 2-5 shows the traffic handled by the two UPFs, visualized through Grafana plots. The transition of
traffic from Slice 1 to Slice 2 is clearly observable, confirming the effectiveness of the offloading procedure.

In order to activate the new slice configuration, the UE was detached and subsequently re-attached. This
procedure is necessary to ensure that Profile 2 was correctly applied, enabling user traffic to be routed
through the second UPF associated with Slice 2.
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Figure 2-5: UPF 1 (above) and UPF 2 (below) user traffic.

2.2 Connectivity Enablers in the Transport Network

2.2.1 Architecture

One of the key enabling technologies in the 6Green SBA is related to providing the connectivity between all
the elements in the architecture. This means covering network connectivity aspects at cloud and in the
transport network. The element responsible for managing the operation of the wide area networks that
reach to the cloud is the Wide-Area Infrastructure Manager (WIM).

The WIM oversees orchestrating and managing the transport network infrastructure. It acts as a central
entity that controls and configures the connectivity between the different NFVI points of presence in the
6Green SBA architecture. It sets and manages links, routes, and network resources required for the
communication between endpoints in the 6Green SBA architecture. The WIM is a key element in managing
the connectivity between sites, as it will provide the network slice connectivity at transport level to fulfil the
needed requirements of the verticals.

The WIM is involved in the slice realization workflow as follows: upon a slice request, the Network Slice
Management Function (NSMF) interacts with the WIM in accordance with the 3GPP TS 28.541
specification [1]. This interaction includes the identification of the network functions involved in delivering
the end-to-end slice, as well as the specific slice requirements across the Core, Transport, and RAN domains.
Based on this information, the WIM is responsible for establishing the required transport connectivity and
for ensuring that the requested Service Level Objectives (SLOs) and Service Level Expectations (SLEs) are
fulfilled within the transport domain. The WIM is complemented with a new element called Network Slice
Controller (NSC). This new component, defined by IETF [2] is in charge of orchestrating the request,
realization and lifecycle control of network slices at transport level. This component translates the abstract
slice service requirements to concrete technologies and establishes required connectivity ensuring that

101096925 — 6Green — HORIZON-JU-SNS-2022 18 of 158



D2.3 — The 6Green Enabling Technologies

6G

resources are allocated to the transport network slice as necessary. It will provide the connectivity in

situations such as:

e Extending the connectivity to the cloud and edge by deploying virtual routing and forwarding (VRF)
instances. This interaction is complex because many components and resources in the SBA
architecture are virtualized on bare metal servers in the cloud. Consequently, communication is
abstracted, using virtualized rather than physical interfaces. This requires interaction with the Virtual
Infrastructure Manager (VIM), which has the context and knowledge about the mapping of cloud

components.

e Providing connectivity and redirection of traffic among the different UPF deployed in the 6Green SBA

architecture.

e Providing connectivity in the transport domain upon slice requests involving Decarbonization Level

Objectives (DLOs), defined in D4.1. This use case is further developed below.

The NSC comprises two modules: the mapper and the realizer. The mapper processes the customer's request,
contextualizing it within the IETF transport network. The realizer then translates this request into a practical
implementation of the transport network, fulfilling the slicing request by interacting with the associated

network controller within the network.

The request received by the NSC originates from a 6G vertical seeking an end-to-end slice with specific
requirements. This request is managed by the 6G end-to-end orchestrator, which configures the RAN and
Core Network elements accordingly before passing the request to the NSC for processing. The NSC then feeds
the relevant wide area network controllers to implement the network slice within the transport network. The

architecture of this component is depicted in Figure 2-6.

WIM
3GPP slicing request
NETWORK SLICE CONTROLLER
Translator ~ ——IETF Slice Intent—> IE;LZ;?:;t
MAPPER CRUD
REALIZER

Realization NRP Creator
Selector

; 7 1

Realization Technologies

NRP creation request

Wide Area Network Controllers

4

e e e s —

Figure 2-6: WIM Architecture.

101096925 — 6Green — HORIZON-JU-SNS-2022

19 of 158



D2.3 — The 6Green Enabling Technologies 66

The mapper handles client network slice requests and correlates them with existing slices. The workflow is
as follows: when a slice request is received, the mapper translates it from 3GPP NRM [1] terms into the IETF
NBI data model [3]. This involves identifying the service demarcation points (SDPs) that define the
connectivity within the transport network. After identifying and mapping these parameters, the next step is
to check the feasibility of implementing the slice request.

To realize a slice, an existing network resource partition (NRP) that meets the specified slice requirements is
needed, which may not always be available. Feasibility information is retrieved from an external module,
beyond the scope of this definition, which provides a response regarding the feasibility of realizing the slice.
If no suitable NRPs are available for instantiating the slice, the mapper requests the realizer to create a new
NRP. This involves interacting with the wide-area network controllers responsible for the transport network
managed by the NSC. This process is iterative until the mapper determines that the slice realization is feasible.

The realizer module handles the actual implementation of each slice by interacting with specific wide-area
network controllers. It receives requests from the mapper and decides on the technologies to use for
instantiating the slice based on the selected NRP associated with the slice.

2.2.2 \Validation

To evaluate the NSC, it is presented within the context of one of the previously introduced use cases, in which
the NSC is responsible for providing a transport network slice that fulfills “green” requirements, also known
as Decarbonization Level Agreements (DLAs)—namely, carbon emissions, energy consumption, energy
efficiency, and the use of renewable energy sources. It is assumed that the slice request originates from the
NSMF component in the form of an intent, following the 3GPP TS 28.541 specification [1].

Additionally, it is assumed that the WAN is managed by the TeraflowSDN controller [4], and that a separate
component, referred to as the energy planner, is responsible for computing the most energy-efficient path
that satisfies the slicing request requirements.

For the purpose of the evaluation, the planner has been integrated into the NSC. However, as a similar
component based on a Path Computation Element (PCE) with energy-aware capabilities has been developed
within the 6Green Project by Ericsson, the NSC is fully compatible and capable of interfacing with this
alternative solution. The architecture of this use case is presented in Figure 2-7.

The overall workflow is resumed as follows:

1. The NSMF, upon a slice request coming from a vertical, sends the slice intent for the NSC to handle in the
transport domain a slice between endpoints A and B.

2. The NSC translate the intent an IETF Slice Service Request [3] and sends it to the planner component.

The energy planner component, retrieves energy metrics from Teraflow to perform calculations.

4. With this information, the planner is able to obtain the optimal traffic path that meets the specified
requirements in the intent.

5. The planner sends this path to the realizer.

6. The realizer sends a request to TeraflowSDN for creating a layer 2 VPN to realize the slice in the cloud
continuum wide area.

w

Firstly, as mentioned before, the process is triggered by the slice intent coming from the NSMF, following the
3GPP TS 28.541 specification. This specification defines the endpoints of the request, which, for this use case,
are A and B, and 4 main slice requirements, defined a Decarbonization Level Agreements (DLAs):

e Energy Consumption, equivalent to the EC indicator, expressed in Joules or kWh [EC].

e Energy Efficiency, equivalent to the EE indicator, expressed in Watts per bits per second [EE].
e Carbon Emissions, expressed in grams of CO2 per kWh [CE].

e Usage of Renewable Energy, expressed as a rate [URE].
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Figure 2-7: Validation Architecture.

For more detail about these parameters, see 6Green D4.1 [5]. An example of a slice service profile with DLAs is
presented below. Note that no other SLOs (i.e. latency, throughput) are defined in this use case for simplicity.

"CNSliceSubnet": {
"networkSliceSubnetType": "CN_SLICESUBNET",
"SliceProfileList": [
{
"sliceProfileld": "GREEN_SLICE",
"CNSliceSubnetProfile": {
"EnergyEfficiency": 1e-9,

"EnergyConsumption": 3000,
"RenewableEnergyUsage": 0.7,
"CarbonEmissions": 200
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Then, the mapper component in the NSC processes the request and translates it into an IETF Slice Service
request, as shown below.

{
"ietf-network-slice-service:network-slice-services": {
"slo-sle-templates": {
"slo-sle-template": [
{

"id": "green_template",
"description": "",
"slo-policy": {
"metric-bound": [
{
"metric-type": "energy_consumption",

"metric-unit": "Joules",
"bound": 3000

5

{

"metric-type": "energy_efficiency",

"metric-unit": "GigaWats/bps",
"bound": 1

I

{

"metric-type": "carbon_emission",

"metric-unit": "grams of CO2 per kWh",
"bound": 200

2
{
"metric-type": "renewable_energy usage",

"metric-unit": "rate",
"bound": 0.7

After that, once the IETF request is generated, it is sent to the energy planner component. There are two
possible deployment options for this component.

e QOperation as an external element: interaction with the energy-aware PCE developed in the context
of the 6Green Project. This requires doing a request to /sss/v1/slice/compute endpoint APl including
as body a Slicelnput object, which contains de following parameters:

o requestld: sequential id of the request

o clientName: the identifier of the client issuing the request

o graph: the descriptor of a service graph, which includes the nodes in which the slice is
deployed (e.g. A and B), the logical link between the nodes implementing the slice topology
and the slice constraints, mapped to the DLOs described above.
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The PCE answers with a Slicelnfo object that includes, among other parameters, the path computed
for the requested slice.

e Rely on an internal planner integrated within the NSC: responsible for computing the most energy-
efficient path.

For the purposes of the isolated evaluation of this use case, the internal planner embedded in the NSC has
been chosen for evaluation. Therefore, the description from this point corresponds to the use of this internal
planner.

This way, the energy planner retrieves the energy metrics from the nodes in the topology by requesting
TeraflowSDN to obtain these metrics from all nodes. These are:

e Power consumed by each node in idle state, measured in Watts [Pigie]

e Power consumed by components in nodes (e.g. transceivers, boards), measured in Watts [Pcomponents]

e Energy efficiency of each node, measured in Watts per bit per second [ee]

e Usage of renewable energy, measured as a rate. This data is specific to the plant where the node is
located [ure]

e Carbon emissions, measured in grams of CO2 per kWh. This data is specific to the plant where the
node is located [ce]

These values are obtained from the TFS Analytics component, which processes the instantaneous energy
metrics obtained from nodes in the TFS Energy Collector component. See Figure 2-8 for TFS component
architecture. Traffic through the nodes is assumed to be 100 gbps and the measurement time window is
assumed to be one hour long.

\
| L3VPN VPN
f TeraFlow NBI & WebUI L2 |ETE Slice TES API
Service Analytics Inventory PCEP
Service mesh
Data bus
Context ici BGP-LS Telemetry
[ Telemetry
NetConf gNMI
3Bl QOpenContig OpenConfig LIVEN L2VPN ACL TE policies
1\ B,

Figure 2-8: TFS Components Architecture.
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The YANG model defining the energy metrics collected from nodes is depicted below:

module: static-device-energy-tid +-- leaf name string
+-- container device +-- leaf type string
+-- leaf name string +-- leaf capacity decimal64 (W)
+-- leaf typical-power decimal64 (W) +-- leaf typical-power decimal64 (W)
+-- leaf maximum-traffic  decimal64 (Gbps) +-- leaf nominal-power decimal64 (W)
+-- leaf max-power decimal64 (W) +-- list components
+-- leaf efficiency decimal64 (W/fps) +-- key "name"
+-- leaf nominal-power decimal64 (W) +-- leaf name string
+-- leaf carbon-emissions  decimal64 (gC0O2/kWh) +-- leaf type string
+-- leaf renewable-energy-usage decimal64 (rate) +-- leaf capacity decimal64 (W)
+-- list power-supply +-- leaf typical-power decimal64 (W)
+-- key "name" +-- leaf nominal-power decimal64 (W)
+-- leaf name string +-- list transceivers
+-- leaf type string +-- key "name"
+-- leaf capacity decimal64 (W) +-- leaf name string
+-- leaf typical-power decimal64 (W) +-- leaf type string
+-- leaf nominal-power decimal64 (W) +-- leaf capacity decimal64 (W)
+-- list boards +-- leaf typical-power decimal64 (W)
+-- key "name" +-- leaf nominal-power decimal64 (W)

Taking into account the topology in the wide area network (Figure 2-9), the energy planner builds a weighted
graph of the topology (Table 1). The weight of each node is named as Green Index [Gl], measured in grams
of CO2, and it defines how “Green” is each node in the topology. The planner computes the shortest path by
applying a Dijstra Algorithm [6]. The formula that the planner uses to compute the nodes’ Gl is depicted
below:

GI = (Pigie + Peomponents + €€ X traffic) X X (1 —ure) Xce

1000
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where Pidle, Pcomponents and ee*traffic is calculated based on the studies in [7].

G

E/ AN

4 i :';',
i ‘J& ALQ

A
Cc
Figure 2-9: Wide Area Network Topology.
A B C D E F G
Gl 145 450 282 380 355 242 226

Table 1: Weighted Adjacency Matrix.

Subsequently, the green optimal path is computed as follows:

Pope = min ZGI(U)

PeP(A,B)
veP

being v a node of the set
= {A,B,C,D,E,F, G}

with the following restrictions taking into account the slice requirements

z ee(v) < EE

VEP

Vv € P, ure(v) = URE

Z ce(v) < CE

VEP

z ec(v) < EC

VEP

After the request is sent to the planner, it responds with the following path between A and B (Figure 2-10).
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- Planning optimal p : {'EC": 18088, 'CE':

- Optimal path:

Figure 2-10: Optimal Path calculated by the planner.

Ultimately, the NSC generates a L2VPN TeraflowSDN service template between the specified endpoints over
the optimal path defined by the energy planner and loads it into TeraflowSDN. If we access TeraflowSDN,
the service is deployed, as shown in Figure 2-11, with the constraints defined in the request. Furthermore,
the specific configurations and the path for traffic is depicted in Figure 2-12.

TeraFlow

Selected Context{admin)/Topclogy(admin)

Service 12-acl-svc-17504186965916050 (4ec59e07-f0fc-5460-a5fe-
67e33701d4ce)

[ Back to service list [x] Delete service

Context: 43813baf-195e-5da6-af20-b3d0922e71a7

Endpoint UUID Name Device  Endpoint Type

UUID: 4ec59e07-0fc-5460-a5f=-67233701d4ce

Name: 12-acl-svc-17504186965916050 a3daeed6-eb88-5280-80c8-a39¢38166317 0/0/0-GigabitEthernet0/0/0/0 Ag copper
Type: LZNM

Status: ACTIVE da3004dc-a569-5(7f-9a73-90832c034c2d 0/0/0-GigabitEthernet0/0/0/0 EC copper
Constraints:

Kind Key/Type Value

Custom energy_consumptionfJoules] 18000

Custom energy._efficiency[W/bps] 5

Custom carbon_emission[gCO2eq] 650

Custom renewable_energy_usage(rate] 05

Figure 2-11. TFS L2 service created

Configurations:

Key Value

Jsettings o mtu: 1450

/device[1.1.1.1)/endpoint{0/0/0-GigabitEthernet0/0/0/0]/settings * circuit_id: 300

* ni_name: ELAN300

* remote_router: 2.2.2.2
* sub_interface index: 0

« vian_id: 300

/device[2.2.2.2)/endpaint]0/0/0-GigabitEthernet0/0/0/0)/settings * circuit_id: 300
= ni_name: ELAN300
* remote_router: 1.1.1.1

« sub_interface index: 0

« vian_id: 300
Sub-
Connection Id Service Path
69b1c0f0-90ab-4158-9be7- A f0/0/0- C @/ 0/0/0- C@./0/0/1- B/ 0/0/0-
a0Bed4dfaBld GigabitEthernet0/0/0/0 GigabitEthernet0/0/0/0 GigabitEthernet0/0/0/1 GigabitEthernet0/0/0/0

Figure 2-12: Configurations and path for service.
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3 Cloud Native Orchestration and Automated Network Infrastructure
Management

3.1 Deployment Aspects

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in 6G

In 6Green, Cloud-native technologies are essential for the efficient operation and optimization of our
complex 5/6G systems, enabling end-to-end (E2E) management and automation services. It is known that 6G
networks aim to enhance wireless network capabilities, delivering higher data rates, lower latency, and
massive connectivity for diverse applications and services. This involves seamless management of network
resources from end devices to core networks, utilizing advanced automation and Al techniques to optimize
performance and efficiency.

The Al/ML is leveraged for predictive analytics, network slicing management, and real-time decision-making,
enhancing automation capabilities. Cloud-native capabilities, enabled through Service-Based Architecture
(SBA), improve modularity and flexibility in network functions and services, based on the following factors:

e Microservices Architecture: Facilitates independent development, deployment, and scaling of
applications, enhancing agility and resilience.

e Containerization: Encapsulates services within containers, ensuring consistency across
environments and simplifying deployment and scaling.

e Orchestration (Kubernetes): Manages the lifecycle of containers, automating deployment, scaling,
and management of containerized applications.

e DevOps Practices: Integrates development and operations teams to improve collaboration and
accelerate service delivery.

e Continuous Integration/Continuous Deployment (ClI/CD): Automates the software delivery process,
enabling frequent and reliable updates.

e Service Mesh: Manages service-to-service communication, providing load balancing, service
discovery, and secure connectivity.

In 6Green, we deliver Cloud Native with Green Efficiency supported by Cloud Infrastructure, the Automation
functions across RAN, Core, and Transport systems, streamlining processes and enhancing performance (6G
RAN, 6G Core, and 6G-EDGE). The Dynamic optimization of the resource utilization is also implemented,
ensuring consistent performance and energy efficiency, addressing key metrics such as Quality of Service
(QoS). The general approach is to integrate NF Sets to ensure 6G Service-Based Interfaces (SBls)
interoperability and flexibility, enabling tailored solutions that meet specific needs and adapt to evolving
technologies and demands. This delivers transformative, flexible consumption of Network Services, providing
a scalable, flexible, and cost-effective way to manage network infrastructure.

The principles rely on virtualized network functions (VNFs) that abstract traditional networking functionalities
into software-based components, with Microservices architecture for modularity, scalability, and agility. The
cloud native invokes the containerization and orchestration, which automate the lifecycle management of
networking containers, ensuring scalability, resilience, and efficient resource utilization. API-Driven
mechanisms are enabled for programmable and automated network management and provisioning. As
implementation of dynamicity and scalability, 6Green allows network resources to scale up or down in
response to changing demand, enabling efficient resource allocation, cost optimization, and improved
performance of network services. The entire ecosystem is based on monitoring and observability
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mechanisms, the tools which provide visibility into network performance, health, supporting the Al/ML data
framework and further the prediction.

6Green empowers the full 6G potential by integrating the sets of NFs and data analytics processes (NSDAF,
NWDAF) through interoperable and APIs. This demonstrates the envisioned service-based architecture and
orchestration that is applied for optimized applications placement and execution in 6G environments,
automated cloud/edge-computing scaling of applications, dynamic creation and maintenance of optimized
services, and automated network infra control of facilities through Infrastructure as Code. 6Green drives
energy efficiency, agility, and innovation in operations.

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in
6G example: NSDAF Use Case.

The NSDAF (Network Slice Data Analytics Function) module has been developed within the 6Green Project,
focusing on energy consumption prediction for network slices. The NSDAF aims to infer KPls, estimate energy
consumption (and carbon footprint) of network slices, including edge-cloud resources hosting vertical
applications, and analyze infrastructure data and network slice metrics.

Data Flow and Architecture:
The NSDAF collects data from various sources:

e Redis DB/Channels: Receives power measurement data for containers and machines, identified by a
unique slice_id.

e Prometheus: Collects infrastructure data (CPU/RAM usage).

e NWDAF/MDAF: Receives KPlIs.

Figure 3-1: NSDAF Interactions with other functions.

The collected data is processed and stored in Redis, and a Flask web service exposes REST APIs for retrieving
historical data and future predictions. Al/ML algorithms, specifically ARIMA, are used to forecast energy
consumption.
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Figure 3-2: NSDAF data processing.

Specifically, the NSDAF utilizes the ARIMA model for time series energy forecasting, ARIMA models are
temporal dependencies in the data, and the model components are:

o AR (p): Models the relationship with past observations.
e | (d): Applies differencing to make the data stationary.
e MA (q): Models the relationship with past forecast errors.

The ARIMA parameters (p, d, g) can be automatically tuned or set statically.

As described in Figure 3-3, the NSDAF data flows is based on:

Labeled slice

Labeled

-« NSDAF

Redis ChannelDB

APIs

ENIF/VAO 2

Figure 3-3: NSDAF data flows.

o NSDAF collect energy consumption data, aggregates it daily and leverages a prediction model to
forecast future consumption.

e Flask web service with two main endpoints - one for retrieving current historical data and one for
obtaining future predictions.

o Different ML models add flexibility to ensure the model can adapt to the generated data
characteristics.
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ENIF/ VAO and other systems to easily obtain both historical insights and future predictions through
simple REST API calls.

NSDAF lead to additional analyses - carbon footprint estimation - applying conversion factors to the
energy data.

This makes the tool highly valuable for energy monitoring, forecasting, and environmental impact
assessments.

Both actual and predicted energy consumption power measurements are provided through APIs, data is
processed to calculate the daily average energy consumption per slice_id. The Data is returned as a list of
tuples: date string energy value, in float List of available slice_ids should be retrieved. ML algorithms build
forecasts for consumption of components in network slice / level of load or resource usage on specific server
and power consumption related to it.

Energy Consumption with 7-Day Predictions

L

100 —e— Actual Energy Consumption
—o— Predicted Next 7 Days

10 15 20 25 30

120 4

-
—
(=]

Energy Consumption (watts)
8

0 5 35
Day

Figure 3-4: Actual and predicted energy consumption by NSDAF

As described previously, in relation with 6Green (SBIs and APIs) and NFs interworking, the NSDAF delivers
the following outputs:

GET /slice_ids Endpoint: returns a list with all slice ids available in order to return energy metrics per
slice ids

POST /current_power_mircowatts Endpoint responds to POST requests by returning historical
energy consumption data

POST /predicted_power_microwatts Endpoint forecasting future energy consumption

POST /cpu_usage Endpoint extracting CPU usage information (similar RAM/Disk/Net)

An example of cloud native Orchestration and Automated Network Infrastructure Management for Green
Efficiency, APls implementation of NF level is provided in Figure 3-5.
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GET Islice_ids POST /current_power_mircowatts POST /predicted_power_microwatts
output: input: input:
{ { { _ _
"slice_ids": [slice_id_|_string slice_id_2 string, etc]. ,‘:l'w—f'dd' Smrl'f; _ISE"e—i'dd' S""['ft .
"error": Boolean, } r_of_days - Integer } nr_of_days . Integel
"error_details": None/String p—
' { output:
"data™ [(date_string, value_float) .....],
"timestamp™: String, "data”™ [(date_string, value float), ....].
"error": Boolean, "timestamp": String,
“error_details"; None/String “error”: Boolean,
} “error_details"; None/String

Figure 3-5: NSDAF APlIs

The 6G networks bring the promise of network enhanced performance, with an increased focus on
sustainability and energy efficiency. The optimizing energy consumption is possible within cloud-native
environments, in this particular case for multi-tenant deployments. The tenant evaluation explores in this
case the integration of tenants within a cloud-native architecture. At this stage, the tenant integration is
focusing on the achievements results of Network Function Set 1 (NF SET 1) and the evaluation of energy-
related Service Level Indicators (SLIs) and Key Performance Indicators (KPls).

The energy analytics is treated as a first-class, within the multi-tenant context concern, as tenants are isolated
at runtime (via Kubernetes namespaces/pods) and the relevant resource (containers, VMs, servers) are
labelled with a tenant identifier (slice_id). This labeling lets NSDAF correlate infrastructure metrics (CPU,
RAM, disk, network) with power data on a per-tenant basis, enabling accurate attribution of energy use and
impact. It defines and reports tenant-specific energy KPIs (consumption per unit, reduction, efficiency) and
supports tenant-level reports and dashboards. With respect to this, forecasts are produced for each tenant
(rather than only at slice/system level), and daily aggregation is aligned to tenant identifiers so that both
historical and predicted series reflect tenant behavior. The same REST interfaces described in Section 3.1 are
reused, but the semantics are explicitly per tenant (e.g., /slice_ids enumerate active tenant IDs). An
additional topic is the closed-loop, tenant-aware orchestration, as the NSDAF integrates with ENIF and the
Virtualized Automation Orchestrator (VAQ), so energy insights can trigger tenant actions (for example, pre-
emptive scaling or resource rightsizing) with policy control at tenant granularity. In a larger context, the
operators can set energy-aware policies per tenant (e.g., caps, throttles, or prioritization) to support
sustainability targets without imposing uniform rules across all workloads.

3.2 Service Mesh Technologies

With the rising popularity of cloud-native applications, service mesh architectures have emerged to enable
advanced functionalities within PaaS environments. Service meshes rely on sidecars, that are
“accompanying” containers, in particular they allow interacting with other containers by communicating with
their respective sidecars. In a nutshell, their main features are i) connectivity, including service discovery, ii)
monitoring, through tools such as Prometheus, and iii) security, with ad-hoc policies to manage accesses.

In the context of 6Green, the service mesh paradigm has been investigated to enable the project’s
innovations on Kubernetes clusters, with special focus on Edge Agility in this phase of the project. Edge Agility
is meant to provide smart, fast, and automated horizontal scalability to vertical application and related slices
across the 5/6G edge-cloud continuum, for example in reaction to a handover event or to move the workload
where more convenient (e.g., to consolidate vApps and slices or to exploit the presence of renewable
sources). In this respect, the first step of interest is the so-called “scale to zero”, that is switching off the pods
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for a certain non-used service for zeroing its, and to quickly resume the operating capacity when needed.
One of the most intuitive ideas is that we can try to pause what is not used, like when we turn off the light
we don't need it.

The main issues to be investigated are the following:

e What happens when some traffic arrives at a service that has been scaled to zero?
e How much time is needed to resume the service? (Scale to zero)

A partial solution to both problems could be the traffic steering to another support cluster/zone where the
service is online, but this requires having a multi cluster environment. In this case we would have all the time
we need for the service to be resumed, but a compromise on the QoS may have to be made (more latency
for the original zone, and more load on the support zone). When the service in the original zone comes up
again, we can steer the traffic back where it should go. A bigger problem arises when dealing with continuous
connections, is it possible to change the destination of the traffic without a service drop? It could be possible,
but this case has to be managed by the application/service.

Another interesting question is when do we need to restore the service? For the sake of simplicity, let's limit
ourselves to the HTTP case. If a request arrives at the service, is it a sufficient reason to restart the service?
For essentials services we could think of delegating the answer to a support cluster (see traffic steering) while,
for not essential services, it may depend on the service provider policy. In any case, the operation of turning
on/off the service multiple time could lead to power consumptions that are higher than the case where the
service is always online. This is why, in some cases, we could think not to respond to a request.

To manage scale to zero operations in this context, the Kubernetes scaling mechanism is not enough since
domain-specific knowledge may be required. To solve this problem, additional tools called Operators can be
installed on the cluster. Operators are software extensions to Kubernetes that manage applications and their
components using custom resources that allow to define application-specific controllers for complex
applications. Controllers are the Kubernetes components that manage the resources lifecycle to bring the
cluster state closer to the desired one.

In the context of 6Green, the operators that we are considering are Knative and KEDA. Knative! provides a
common toolkit and API framework for serverless workloads, to support the deployment, running, and
management of serverless, cloud-native applications to Kubernetes, but it does not allow to be integrated
on an already running cluster. KEDA? is a Kubernetes-based Event Driven Autoscaler?. It allows the scaling of
any container in Kubernetes based on various metrics like the number of events needing to be processed. It
is lightweight and can work with standard K8s components such as Horizontal Pod Autoscaler and can extend
functionality without overwriting or duplication. While it natively offers the needed scaling feature, it can
only operate on a per-cluster basis, which would prevent us from scaling in the continuum. When a scale to
zero operation is performed on essential services, the traffic needs to be redirected to a running instance of
the service in another cluster to prevent service interruption. For this purpose, a service mesh should be
installed on the cluster. In 6Green, we decided to rely on Istio as a service mesh, that is described in the next
subsection, followed by a set of evaluation results.

Alongside the traditional Kubernetes networking we have decided to use Istio. This enables us to extend
Kubernetes establishing a programmable, application-aware networking using the Istio provided Envoy

! https://www.redhat.com/en/topics/microservices/what-is-knative
2 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics
3 https://dev.to/sarony11/hpa-vs-keda-in-kubernetes-the-autoscaling-guide-to-know-when-and-where-to-use-them-m96
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service proxy. Beyond this, it allows us to use Monitoring data generated by the sidecars (Envoy proxy) to
energy efficiency scopes (as explained later in the document).

We documented how Istio is working to understand when it is possible to install it, in particular if it possible
to perform a Day-2 installation on a cluster with services that are already running on it.

First of all, the installation is performed using the dedicated Istioctl CLI tool or through the Helm chart. After
this task, the injection of the sidecar must be enabled for every namespace that is needed. Now, if the cluster
is brand new, we do not need to worry about anything, Istio will be working on deployed services. Otherwise,
if some services are already running on the cluster, we will need to change these resources. To understand why,
Istio uses Admission Controllers to intercept APIs calls and in this process, it injects sidecars into running Pods:

e Prior to persistence of Resources
e After the APl request has been authenticated and authorized

Scale-to-zero has been implemented by means of a UPF prototype, based on the Berkeley Extensible
Software Switch (BESS*): when the UPF receives a packet directed towards the application deployed on the
“scaled-to-zero” pod, it sends an alert to the pod asking it to scale back up and, in the meantime, it stores
the incoming to give it time to get back up without packet losses. Although the mechanism itself is
straightforward, on the other hand the operation can introduce additional consumptions if the scaling
operation happens too often. The following results allow for an evaluation of such consumption for a better
understanding of how to best apply the mechanism.

3.2.1 Overhead of Container Scaling Operations

Studies have been done to see the advantages in scaling pods to zero when needed by observing the CPU
power consumption. These data are relevant in understanding when it is applicable to horizontally scale
vertical application and related slices across the edge-cloud continuum. In particular, several measurements
and results that have been performed on the CPU power consumption ascribable to the pod deployed on the
Kubernetes Cluster when it scales from zero to one and vice versa with different timings using Intel “Running
Average Power Limit” (RAPL)[8].

4 https://span.cs.berkeley.edu/bess.html
5 Intel RAPL https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
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Figure 3-6: Traffic generation and scaling the pod.
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Figure 3-7: Setup used for the tests.

To simulate a server, a NUC PC has been used. This PC was developed by Intel, and it can be used in both
gaming and commercial fields. The mounted processor is an Intel(R) Core (TM) i7-6770HQ CPU @ 2.60GHz.
On top of it, a Kubernetes cluster has been set up on bare metal, with a single node running both as master

and worker, as this configuration better suits the NUC architecture. The operating system installed on it is
Ubuntu 24.04.1 LTS.
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On the other side, to simulate the client, a virtual machine has been instanced using OpenStack® , which is an
open source set of software components that is used for cloud laa$, facilitating the control large pools of
networking, the computation and storage of resources and allows to set up the test environment.

In order to assess the CPU power consumption ascribable to the scaling pod, a Python application called
Power Collector’ has been used in the NUC. This application reads the RAPL power counter contained in the
Linux kernel throughout the duration of a test every 1,55 seconds, and then saves them. The pod is deployed
on the NUC using a Rust application® and requires a NodePort, a Kubernetes service that exposes the
application onto an external IP address to allow the cluster to communicate with the external world.

On the client side, a self-developed Rust application called Packet Generator® that generates continuous
traffic to be sent to the pod deployed on the server by opening a TCP/UDP socket. This application sends a
packet at tO to the pod deployed on the server. If the pod is active, it elaborates the packet receive while
doing some background work and sends an acknowledgement to the client. This goes on until, at time ti, a
“scale-to-zero” signal is requested by the client. The server scales the pod to zero by deleting the deployment.
All packets sent by the client from here are not elaborated by the server, so they reach a timeout and are
then dropped. This mechanism works as a sort of ping, which is used to monitor if the pod is active or not.
This goes on until at time tj a “scale-to-one” signal is sent by the client. The server reactivates the pod by
deploying a new Kubernetes deployment. These operations go on until the end of the test time. This
mechanism can be seen in Figure 3-6.

The Packet Generator application allows the selection of cores to be used in the server during the test, the
kind of background operations it does whether a packet is received or not, and the percentage amount of
background work. It also allows to choose how the packets are handled by the server, such as the packet
elaboration time and the packet elaboration work type, as well as the maximum response time a sent packet
and whether the traffic is TCP/UDP. Furthermore, it permits to set the test duration and when a pod should
be scaled to zero or to one.

The setup adopted for the test is shown in Figure 3-7. The Virtual Machine is exposed to the internal network
by OpenStack by assigning a floating IP to the instance. The IP address assigned to the virtual instance is
192.168.254.166. As for the NUC, the IP assigned to it is 192.168.17.149. As for the Packet Generator, the
type of operation used by the background work and the packet elaboration type is the calculation of prime
numbers. The number of cores used are 8, which is the total amount of cores the NUC has. The elaboration
time of a packet is 1500ms and the max response time of a sent package is 1550ms.

The packets are sent every 1.5 seconds, and test have been conducted by scaling the pod every 15 seconds,
3 minutes, 5 minutes and 12 minutes, and they are compared to when the pod is active with traffic received,
the pod is active while in idle and the pod active with traffic dropped. Each test runs for one hour and a few
minutes and is repeated for each event.

3.2.1.2 Results Evaluation

As mentioned before, results will focus on power consumption. Figure 3-8 to Figure 3-14 show the power
consumption of the server that has been retrieved by the RAPL power counter. Figure 3-8 shows the power
consumption of the pod that stays active and in idle state, without any traffic being received. Figure 3-9 to
Figure 3-12 show the power consumption when the pod scales with different frequencies, and Figure 3-13

6 Openstack https://www.openstack.org/

7 Power Collector https://github.com/nikyjanel5/Power Collector
8 Rust https://www.rust-lang.org/

9 Packet Generator https://github.com/s2n-cnit/pktgen
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shows the pod always active and receiving traffic, while Figure 3-14 shows the active pod receiving traffic
and at certain point it does not receive it anymore.

Focusing on the plots, Figure 3-9 to Figure 3-12, when the pods scales from zero to one there is a spike of
power, which is due to the “waking up” of a new pod upon a scaling up request. This power spike is the same
height in all the plots. This is different from the case shown in Figure 3-8 and Figure 3-13; in these, the power
consumption is flatter. Deploying a new pod means allocating resources and consuming energy in order for
it to do its task. After the spike, the power returns to regime until the next scaling request.

Moreover, when observing Figure 3-14, it can be seen that at 00:30:22 the pod doesn’t receive any traffic
from the client, and the power consumption from that point forward is 8W, the same mean consumption as
Figure 3-8. Comparing it with Figure 3-9 to Figure 3-12, it can be observed that, when the “scale-to-zero”
operation is requested, the power consumption while the pod is down is 4W. This means that scaling pods
down halves the amount of power consumption with respect to leaving the pod up, independently of
whether traffic is transmitted or not.

Another thing worth mentioning is that, by comparing the plots, the power consumption seems to be less
when the pod is active all the time and not receiving traffic, and not when it gets scaled to zero. But when
the pod is active and receives a continuous stream of traffic, the power consumption doubles with respect
to scaling. This can be shown clearly in Table 2 by looking at the mean value in each case. The mean power
consumption of the active pod when it just exists is half with respect to scaling and a third of when the pod
is active and receiving traffic. Furthermore, the power consumption is the same independently of the total
amount of times the pods scales. Looking at the standard deviation, it is worth mentioning that it is much
larger when the scaling is happening due to spikes given by the “wakeups” of the pod.

These results show a supposed advantage in scaling the pod to zero to decrease the overall power
consumption, but this also depends on the application deployed on the pod. If an application has more
overhead when starting up, this could cause a long burst of power consumption before going to regime
instead of a spike of power, which means higher consumption.

Table 2: Mean and standard deviation of the power in watts when scaling with different frequencies.

Mean Std
Pod active in idle 8 1.28
15 seconds scaling 14 9.79
3 minute scaling 13 9.79
5 minute scaling 14 10.94
12 minute scaling 14 9.82
Pod active with traffic 23 0.1
Pod active with traffic stopped 16 7.65
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Figure 3-8: Power consumption when the pod does not receive any traffic.
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Figure 3-9: Power Consumption when the pod scales every 15 seconds.
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Figure 3-10: Power Consumption when the pod scales every 3 minutes.
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Figure 3-11: Power Consumption when the pod scales every 5 minutes.

38 of 158

101096925 - 6Green — HORIZON-JU-SNS-2022



reen

D2.3 — The 6Green Enabling Technologies

[Tp]
o

o
wl

n o un O un o
m o o™ ™~ o=

[a]uondwnsuo) 1amod

n o

9t%:00:T0
9¢:85:00
90:95:00
9t'€5:00
521500
90:'6%:00
St9t:00
Y00
¥0:¢t00
E¥'6E:00
r¢LE00
€0:5E:00
CicE00
¢C0g:00
¢0:82:00
iS00
€CEC00
¢0:T2:00
T+:81:00
<9100
T0+T:00
T 1100
12:60:00
10:£0:00
0r+0:00
61:C0:00
00:00:00

5]

mim:

Time[hh

Figure 3-12: Power Consumption when the pod scales every 12 minutes.
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Figure 3-13: Power Consumption when the pod is active and receives traffic.
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Figure 3-14: Power consumption when the pod is active, and traffic is stopped.

3.3 Infrastructure as a Code Mechanisms Based on the MetalCL

The MetalCL is devoted to the management and terraforming of the VIMs, operating systems and bare-metal
resources available in a testbed. In the presence of this service, physical servers and hardware network
equipment, as well as their operating systems, can be dynamically managed on demand. The conceptual
framework behind the MetalCL is grounded in the paradigm of Infrastructure as a Code (IaC). In essence, the
MetalCL serves as a versatile tool, enabling the composition of code to define, deploy, update, and destroy
infrastructure elements essential for the realization of diverse projects. One of the prominent facets of the
MetalCL’s application spectrum is its utilization for the orchestration of 5Gbeyond-green initiatives. In this
context, the MetalCL plays a pivotal role as an actuator, facilitating the dynamic alteration of states within
the domain of bare-metal equipment. Furthermore, the MetalCL serves as a dedicated service for managing
and terraforming bare-metal resources, encompassing physical servers and hardware network equipment to
create laaS and PaaS environments tailored to the specific requirements of 6G and 5G-beyond platforms.
This capability includes overseeing operating systems on servers, configurations in network equipment, and
installing complex distributed applications like Open-Stack and Kubernetes.

The MetalCL operates as an advanced infrastructure management system designed to optimize a wide range
of hardware and software resources. Within its operational framework, the MetalCL is structured around
several key components, each fulfilling distinct roles vital for cohesive resource management and allocation.

These pivotal components include delineated ‘Zones,” which serve as segregated collections of hardware and
software resources with specific functionalities. These zones can be characterized by unique levels of
programmability, defining not only a diverse spectrum of resources but also the level of accessibility and
programmability that can be performed on them: functionality within each zone spans from fundamental
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access to comprehensive management tasks, encompassing server selection, installation, and
reconfiguration of instances.

Zones within MetalCL are tactfully implemented as encapsulated ”plugins”; this architectural approach is
pivotal in maintaining system modularity. By employing plugins, the MetalCL obviates the need for recurrent
service recompilation and prevents the inadvertent introduction of unwarranted dependencies, thereby ensuring
a coherent and adaptable system framework. The linkage between individual OpenStack or Kubernetes instances
and projects is exclusive, establishing clear delineation in resource allocation and management.

The MetalCL interfaces with three external components: the MAAS server the Ansible engine and the NetCL.

The Metal-as-a-Service (Maa$S) server, an open source project developed by Canonical’, revolutionizes the
management of individual bare-metal servers, bringing them in line with the administration of virtual
machines within a cloud environment. This service enables the discovery, commissioning, deployment, and
dynamic reconfiguration of extensive fleets of physical servers. With requirements as minimal as an IPMI-like
system?! and support for network boot operations through PXE standards [9], Maa$ catalogues and manages
these servers, offering functionalities akin to those in virtualized environments. Operating within MetalCL,
Maas utilizes its REST APIs to initiate bare-metal level changes, controlling power states and installing (on
demand and as-a-Service) almost any operating system by properly configuring and administering the
network(s) (mainly at the IP layer, while layer 2 interconnectivity and additional functions like gateways and
firewalls are provided by the NetCL service). Maa$S exposes a complete set of REST APls, which are consumed
by the MetalCL to trigger any changes at the bare-metal level.

Some key advantages of MaaS encompass automated remote operating system deployment, centralized
monitoring, rapid provisioning, and tear down of bare-metal server configurations. It proves beneficial for
environments necessitating frequent rearrangements of physical hardware, offering cloud-like agility to bare-
metal setups. MaaS demonstrates its versatility across dynamic bare-metal infrastructure scenarios by
treating physical servers as virtual resources. This approach infuses cloud-like flexibility into bare metal
environments, efficiently handling deployment, modification, and reconfiguration of bare-metal setups.
Integrating MaaS within MetalCL ensures adaptability and responsiveness to the evolving demands of
infrastructure, making it invaluable for applications requiring frequent changes in server topology.

The Ansible Engine?? plays a pivotal role within the MetalCL by driving any software installation, application and
OS reconfigurations over the bare-metal servers installed by MaaS. This engine is the one that provides the
MetalCL with the capability of installing software dependencies and installing and managing, in a zero-touch
fashion, complex distributed software like OpenStack or Kubernetes over one or more servers, overseeing
complex applications by assigning specific server roles, such as the number of controller or compute nodes. The
zero-touch deployment model facilitated by Ansible ensures seamless and automated execution of tasks,
significantly enhancing the efficiency and reliability of server-related operations within the MetalCL framework.

The NetCL serves as a key element for automated discovery, employing the LLDP protocol to uncover the
physical topology. This capability allows it to access the command line or REST interfaces of networking
devices, e.g., interconnection layer-2 managed switches (with VLAN or OpenFlow support), routers
(optionally with the support of virtual routing functions) and firewalls, to enable the configuration of overlay
networks. These networks not only facilitate the seamless hosting of complex platforms like OpenStack and
Kubernetes but also actively manage interconnectivity among servers.

10 https://maas.io/

11 https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-revl-1.html
12 https://www.ansible.com/

101096925 — 6Green — HORIZON-JU-SNS-2022 41 of 158


https://maas.io/
https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.ansible.com/

D2.3 — The 6Green Enabling Technologies 66

Additionally, the NetCL assumes a pivotal role in network orchestration: it facilitates the automatic discovery
of the physical topology and takes charge of interconnecting layer-2 switches, routers, and firewalls to
establish overlay networks. This functionality is crucial in ensuring the efficiency of connectivity among
servers, thereby significantly enhancing the robustness and stability of the entire network infrastructure.

3.3.1 Power Management Capabilities

At the heart of the MetalCL's resource management capabilities lie two fundamental pillars: the dynamic
adjustment of CPU frequencies and the nuanced manipulation of C-States.

The importance of CPU frequencies lies in their direct effect on computational performance. Higher
frequencies generally mean faster computations, making this parameter essential for a range of tasks.
MetalCL's dynamic frequency adjustment allows users to tailor system performance based on their
application's needs, promoting efficiency and responsiveness. MetalCL's dynamic CPU frequency
management lets users balance the need for quick computations with the goal of minimizing energy use. This
adaptability is valuable when computational requirements vary. Users can adjust the system's performance
in real-time, responding to changes in workload intensity. MetalCL's flexibility in handling different workloads
provides a practical solution for optimizing performance and energy efficiency in dynamic computing
environments. In scenarios like cloud computing, where workloads can change unexpectedly, the ability to
adjust CPU frequencies dynamically is crucial for resource allocation and cost-effectiveness.

C-States, denoting CPU power states, encapsulate a spectrum of power consumption and performance levels
accessible to a CPU. MetalCL, empowers users with the unique capability to finely manipulate C-States. This granular
control enables dynamic adjustments to individual CPU power states, responding adeptly to the ever-changing
demands of diverse workloads.

MetalCL's prowess extends beyond CPU frequency adjustment, as it seamlessly integrates the manipulation of C-
States. C-States, ranging from CO to Cn, represent a hierarchy where CO signifies the highest-performance state, and
ascending numbers (C1, C2, etc.) denote progressively deeper levels of power-saving states. This hierarchical
structure allows CPUs to transition intelligently between states, aligning power consumption with the immediate
processing requirements. The dynamic nature of C-State manipulation in MetalCL introduces a new dimension to
power management, offering users a versatile tool to optimize energy efficiency and enhance hardware longevity.

The MetalCL has been recently extended with an API for retrieving information about the underlying hardware
configuration. This architecture information encompasses critical details such as CPU model, number of cores
and threads, cache sizes, CPU vulnerabilities, and more. Understanding these aspects of the CPU architecture
aids in optimizing system performance, identifying potential vulnerabilities, and making informed decisions
regarding hardware provisioning and management. In Figure 3-15, an illustrative example of the output is
provided, while Figure 3-16 depicts a sample of representation of the available governors for a server.

The API facilitates the retrieval of the real time status of governors for each CPU core. This feature allows users
to monitor and adjust the governor settings dynamically, ensuring efficient resource utilization. Figure 3-17
illustrates a sample of the status of governors for individual CPU cores. Additionally, the API offers access to the
current frequency of each CPU core, enabling real-time monitoring of processor performance. This information
allows users to analyze CPU usage patterns and make informed decisions regarding workload distribution and
system optimization. An example showcasing the current frequency of CPU cores can be seen in Figure 3-18.

Two other relevant features are the monitoring of the available and current C-states for each CPU core,
shown in Figure 3-19 and Figure 3-20, respectively. The former, along with detailed information about each
state's characteristics and capabilities, facilitates fine-grained power management strategies., while the
latter provides insights into power-saving behaviours and system efficiency.
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Finally, users can utilize the API to obtain the percentage of time each CPU core has spent in a specific state,
both for a specified interval or over the entire duration of system operation. This data allows for
comprehensive analysis of CPU usage patterns and power consumption trends. Figure 3-21 presents an
example of the percentage distribution of CPU core states.

Response body

"Architecture”: "x86_64",

"CPU op-mode(s)”: "32-bit, 64-bit",

"Address sizes": "46 bits physical, 48 bits virtual”,

ittle Endian”,

"CPU(s)": "64",

"on-line cPU(s) list": "@-63",

"Vendor ID": "GenuineIntel”,

"Model name”: "Intel(R) Xeon(R) CPU E5-461@ v2 @ 2.30GHz",

"cPU family": “"&",

"Model": "62",

"Thread(s) per core”

"Core(s) per socket”

"socket(s)": "a",

"Stepping”: "4",

"CPU max MHz": "27@0.0@ee",

"CPU min MHz": "1200.0000",

"BogoMIPS": "4588.48",

"Flags”: "fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fx
sr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp 1m constant_tsc arch_perfmon pebs bts rep_good nopl xtop
ology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm
pcid dca sse4_1 ssed_2 x2apic popent tsc_deadline_timer aes xsave avx fi16c rdrand lahf_lm cpuid_fault epb p
ti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase smep erms xsaveopt dtherm
ida arat pln pts md_clear flush_lid",

"Virtualization™: "VT-x",

"Lld cache™: "1 MiB (32 instances)”, E‘ Download

"L1i cache™: "1 MiB (32 instances

Figure 3-15: Example output showcasing CPU architecture information retrieved through the API.

Response body

"availableGovernors™: [
"conservative”,
"ondemand”,
"userspace”,
"powersave”,
"performance”,
"schedutil”

E& Download

Figure 3-16: Representation of the available governors for CPUs retrieved using the API.
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Response body

"performance”,
"powersave”
"powersave”
"powersave”
"powersave”

"powersave”,
"performance”,
"powersave”,
"powersave”,
"performance”,

"10": “"powersave" & Download

GO NOVEUNKS

Figure 3-17: Monitoring of the status of governors for each CPU core through the API.

Response body

cpu™: o,
"current_frequency mhz":

"cpu”: 1,
"current_frequency_mhz":

"cpu”: 2,
"current_frequency_mhz":

"cpu”: 3,
"current_frequency mhz":

cpu”: 2,
"current_frequency _mhz":

=cpu”: 5,
"current_frequency mhz":

E.  Download

Figure 3-18: lllustration of the current frequency of each CPU core retrieved through the API.
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Response body
{

"cpue”: [
{
"state”: “statee”
"name”: “POLL",
"latency”: "e"
"disable™:

": "statel™
n. omeqe

"state2”

"latency”:
“disable": "1"

"latency”:
"disable": "1"

B Download

Figure 3-19: Visualization of the available C-states for each CPU core retrieved through the API.

Response body

"cpuNumber”: “cpue”
"enabledstates”: [
"state@”

"cpuNumber™: “cpul®
"enabledstates™: [
"stateq”

"cpuNumber™: “cpu2”
"enabledstates™: [
"state@”

"cpuNumber”: “cpu3”
"enabledstates™: [
"statee”
"statel”
"state2”
"state3”
"stated4”

Figure 3-20: Real-time monitoring of the status of C-states for each CPU core through the API.
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Response body
{

"cpue”: [
{
"state”: “statee”
"name”: “POLL",
"latency”: "e",
"disable™: "@"

"state™: "statel”
“"name”: “c1",
"latency”: "1",
"disable™: "1"

"state™: "state2"
“name": "C1E"
"latency™: ”
"disable™: "1"

"state”: “state3”
"name”: "C3",
"latency”: "59",
"disable™: "1"
B Download

Figure 3-21: Example representation of the percentage distribution of CPU core states retrieved through the API.

The API also offers comprehensive capabilities for monitoring power consumption, leveraging three distinct methods
to ensure accuracy and reliability in data acquisition. The RAPL (Running Average Power Limit) method provides
insights into power consumption at the processor level, offering detailed information about energy usage patterns
and fluctuations, asillustrated in Figure 3-22. Additionally, the API utilizes the IPMI (Intelligent Platform Management
Interface) protocol to access power-related data from system hardware components, enhancing visibility into power
consumption across various subsystems, as demonstrated in Figure 3-23. Furthermore, sensor-based measurements
enable real-time monitoring of power usage at the hardware level, capturing fine-grained details about energy
consumption in different system components, as depicted in Figure 3-24.

By employing multiple data collection methods, the APl enhances the robustness and accuracy of power
consumption monitoring, facilitating comprehensive analysis and optimization of energy usage. This multifaceted
approach enables users to gain deeper insights into power consumption dynamics, identify inefficiencies, and
implement targeted strategies to enhance energy efficiency and sustainability in computing environments.
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RAPL Powers

RAPL Power Consumption

Rapl Domain Power Consumption
PhysicalGroup0 2276
PhysicalGroup1 21.90
PhysicalGroup2 2343
PhysicalGroup3 21.97

Total Consumption 9006

Figure 3-22: Power consumption monitoring using the RAPL method.

IPMI Powers

IPMI Power Consumption

IPMI Domain Power Consumption Unit Status
Power Supply 1 105 Watts ok
Power Supply 2 90 Watts ok
Power Meter 190 Watts ok

Figure 3-23: Power consumption monitoring utilizing the IPMI protocol.

Sensor Powers

Sensor Power Consumption

Sensor Domain Power Consumption Unit Status

power1 189 w 300.00s

Total Sum 189.00

Figure 3-24: Real-time monitoring of power usage through sensor-based measurements.

Enhancing user experience, a GUI is provided to offer a user-friendly interface for comprehensive system
monitoring. Users can conveniently access a summary of the current governor assigned to each CPU core,
providing insights into power management strategies and workload distribution. Additionally, real-time updates
on the current frequency of CPU cores allow users to track performance fluctuations and optimize system
resources effectively. Furthermore, the GUI provides visibility into the status of various available C-states,
empowering users to fine-tune power-saving configurations for enhanced energy efficiency. Figure 3-25 offers a
visual representation of these monitoring capabilities, showcasing the intuitive interface provided by the GUI.
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CPU Governor Frequency C-State

0 schedutil Freq: 1654.73
1 schedutil Freq: 1263.23
2 performance Freq: 2315.85
3 schedutil Freq 1771.44
4 schedutil Freq: 1197.08
5 schedutil Freq: 1197.23
6 schedutil Freq: 1197.31
7 schedutil Freq: 2337.34
8 powersave Freq: 13325
g9 schedutil Freq: 2006.08
10 schedutil Freq 1389.35

Figure 3-25: Visual representation of the provided GUI.

3.3.2 Results

The aim of this testing is to analyze the power consumption of a server under different configurations of c-
states and governors. Specifically, we want to understand how altering these settings impacts power usage
both under normal CPU loads and under maximum CPU stress.

In the initial configuration, the C-state is set to State0, and the governor is set to Performance. The system is
operating under normal load conditions. Upon changing the governor to Powersave, there is a noticeable
decrease in power consumption from 371.24 W to 249.18 W, as depicted in Figure 3-26. This demonstrates
the impact of governor settings on power usage when the system is not fully loaded.

Power consumption over the past 20 minutes at ten-second intervals.

380 380
Watts Watts

310
Watts

310
Watts

240
Watts

240
Watts

Figure 3-26: Comparison of power consumption before and after changing the governor to Powersave with normal
system load.
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With the governor set to Powersave and increasing the system load to 100%, the power consumption rises
to 263.45 W, as shown in Figure 3-27. This illustrates that even with a Powersave governor, power
consumption increases under full load conditions.

Power consumption over the past 20 minutes at ten-second intervals.

380 380
Watts Watts

310
Watts

310
Watts

240
Watts

240
Watts

Figure 3-27: Power consumption with the Powersave governor under full system load, illustrating increased power
usage compared to the previous configuration.

After changing the governor back to Performance while maintaining the 100% system load, the power
consumption further increases to 407.23 W, as seen in Figure 3-28. This emphasizes the role of the governor
in influencing power consumption under varying workloads.

Power consumption over the past 20 minutes at ten-second intervals.

420 420

Watts :> Watts

330 330
Watts Watts
240 240
Watts Watts

Figure 3-28: Power consumption spikes after reverting the governor back to Performance while maintaining full system
load.

When the C-state is changed to All while the system is not under full load, the power consumption decreases
significantly to 177.43 W, as depicted in Figure 3-29. Enabling all C-states allows for better power
management when the system is idle.
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Power consumption over the past 20 minutes at ten-second intervals.

410 410
Watts Watts

290 290
Watts Watts
170 170
Watts Watts

Figure 3-29: Significant decrease in power consumption with all C-states enabled under normal system load conditions.

Even with all C-states enabled, when the system load is increased to 100%, the power consumption rises
notably to 407.11 W, as shown in Figure 3-30. This highlights that while C-states can help in reducing power
consumption during idle states, they may not have a significant impact when the system is under heavy load.

Power consumption over the past 20 minutes at ten-second intervals.
410 410
Watts Watts

290
Watts

290
Watts

170
Watts

170
Watts

Figure 3-30: Power consumption increases notably under full system load even with all C-states enabled.

With the governor set to Powersave and the system not fully loaded with all C-states enabled, the power
consumption is 172.13 W, as indicated in Figure 3-31. This likely demonstrates a lower power usage
compared to the Performance governor under similar conditions.
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Power consumption over the past 20 minutes at ten-second intervals.

410 410
Watts Watts

290
Watts

290
Watts

170 : — 170
Watts i ? Watts

Figure 3-31: Lower power usage observed with the Powersave governor and all C-states enabled under normal load
conditions.

Under 100% system load with the governor set to Powersave and all C-states enabled, the power
consumption is 261.25 W, as shown in Figure 3-32. This figure illustrates the power consumption increase
compared to the previous figure due to the higher workload. But as the governor is set to Powersave, we see
that this increase is not as much as the time that the governor is set to Performance.

Power consumption over the past 20 minutes at ten-second intervals.

410 410
Watts Watts

290
Watts

290
Watts

170 -20min presant 170
Watts Watts

Figure 3-32: Increased power consumption under full system load with the Powersave governor and all C-states
enabled compared to the previous configuration.

When the C-state is changed to only State2 while the governor remains as Powersave, the power
consumption reaches to 193.72 W, as observed in Figure 3-33. This highlights the influence of specific C-state
configurations on power efficiency.

101096925 - 6Green — HORIZON-JU-SNS-2022 51 of 158



D2.3 — The 6Green Enabling Technologies GGI‘een

Power consumption over the past 20 minutes at ten-second intervals.

410 410
Waitts Watts
290 290
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Figure 3-33: Power consumption with specific C-state configuration (only State2) and Powersave governor under
normal load conditions.

By setting the governor to Ondemand while C-states are set to all and with the system load at 100%, the
power consumption increases to 406.03 W, as shown in Figure 3-34. This demonstrates that the Ondemand
governor can reach maximum power consumption levels when the workload is at 100%, similar to the
Performance governor configuration.

Power consumption over the past 20 minutes at ten-second intervals.
410 410
Watts Watts

290
Watts

290
Watts

170
Watts

170
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present

Figure 3-34: Power Consumption with Ondemand Governor and All C-states Enabled Under Full System Load.

3.4 ZeroOps and Continuous Automation Based on the NFV Convergence Layer
(NFVCL)

The NFVCL is a network-oriented meta-orchestrator, specifically designed for zeroOps and continuous
automation. It can create, deploy and manage the lifecycle of different network ecosystems by consistently

coordinating multiple artefacts at any programmability levels (from physical devices to cloud-native
microservices).
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In detail, a network ecosystem like the one in Figure 3-35 is meant to be a complete functional network
environment, such as a 5G system, an overlay system for network cybersecurity or a simple application service
mesh. For their nature, these environments are realized through heterogeneous Network Functions (xNFs —
i.e., Physical NF, Virtual NF and cloud-native Kubernetes NF), which are usually to be realized over highly
distributed infrastructures. More specifically, every network ecosystem can be thought of as a graph § =
(V UV, E), where the vertexes are composed of the sets of xNFs instances V and the sets of interconnection
networks V', while the € represents the interconnectivity edges between xNFs and networks.

As defined in the ETSI NFV standard, xNFs are managed by the NFVO through end-to-end Network Service
Instances. Every Network Service can include one or more xNF instances, and it is meant to be deployed over
a single geographical facility, which may correspond to a computing facility and/or a physical device (e.g., a
gNodeB, an O-RAN Radio Unit, a P4 switch, etc.).

The graph G of a network ecosystem, represented in Figure 3-36, is meant to be annotated with “anchors”
that represent the placing/binding of the ecosystem endpoints over the physical infrastructure topology. An
anchor can be associated to a network in the V" set, or to a PNF to be instantiated over a physical device.

Moreover, Figure 3-35 and Figure 3-36 highlight the support for having different levels of virtualization which
can be exploited by the NSs. Platform as a Service (PaaS) allows the deployment of KNFs, Infrastructure as a
Service (laaS) of VNFs and finally Metal as a Service (Maa$) allows to bypass virtualization and to deploy
services directly on the Hardware (e.g., a Kubernetes bare-metal cluster).

Network Ecosystem Instance

Network Service Instance

n
& . Network Service Instance
Network Service Instance “

m Network Service Instance

Network Service Instance

Figure 3-35: A Network ecosystem instance composed of 5 Network Services made up of a variable number of xNFs.

Physical Infrastructure

Figure 3-36: The graph of a network ecosystem with anchor points highlighting the link between the xNFs and the
physical infrastructure.
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3.4.1 The Network Ecosystem

The NFVCL has been built over a modular and flexible architecture that can be easily extended to support
new xNF and ecosystems. At the foundations of this architecture, the metamodel in Figure 3-37 has been
specifically designed to augment extensibility and flexibility and to drive clear interaction patterns among the
different internal modules during LCM operations.

Still with reference to Figure 3-37, every ecosystem instance is built through a Blueprint, which on its turn
falls into a Category. The Blueprint Category corresponds to the high-level network ecosystem function type,
like a 5G system, a network security tool-chain, etc. The Blueprint is meant to support ad-hoc operations for
specific implementations falling into that Category. For instance, the NFVCL currently provides 4 different 5G
system implementations, based on different open-source projects, namely Free5GC, Open5GS, OpenAir
Interface and SD-Core.

The Blueprint Category allows to have a homogeneous north-bound interface against the different
implementations available for an ecosystem, since it defines a single input meta-data model (including the
possible ecosystem end-points) and the associated ecosystem-level LCM methods. For example, the 5G
System Blueprint Category exposes operations to add/remove/reconfigure RAN over specific geographical
areas, to create/modify/destroy network slices, etc., and it fixes the end-points to be physical devices like
base stations or O-RAN radio units, and networks to be used as 5G DNN.

A Blueprint provides the implementation-specific means to support the Category methods and to
translate the metadata model into sets of NSIs and xNFs, interconnected and running with coherent (but
implementation-specific) configurations. To this end, Blueprints defines the template of the ecosystem
internal topology, as well as the specification of the internal procedures to be executed for every
supported Category method. These internal procedures are realized as saga pattern interactions among
specific NFVCL modules.

A Blueprint contains a lot of data that can be categorized in:

e Status: contains information on the status of resources (like the list of interfaces with the relative IPs).

e Configurators: the list of configurators (status included) that are created and used by the Blueprint
(Day-0, Day-2, Day-N).

e Topology: the information on the topology in which the Blueprint is deployed.

The code of a Blueprint class is the one managing how, and in which order, Resources are generated. The
Blueprint instance is also managing Day-2 operations like adding, updating and deleting a node from the
blueprint instance. The new Blueprint system abstracts the concept of Provider, offering a uniform set of
functions to every type of Blueprint. These functions are offering the tools for the LCM of resources
composing the specific instance of that type of blueprint. Since a Blueprint can be composed of both VMs
and K8s resources, the provider interaction is not limited to one, but we can interact with several providers.
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Figure 3-37: Network ecosystem metamodel.

The topology template defines the G graph pattern including the templates of internal network and of NSIs
that can be applied, and their possible relationship bindings. Everything that is contained in the Topology is
used by the NFVCL to manage the lifecycle of Blueprints. For example, when a Blueprint is deploying VMs,
the VIM to be used is identified using the VIM data saved in the Topology.

Finally, the xNFs metadata model plays a key role in the NFVCL architecture. It defines not only the specific
physical/virtual/Kubernetes deployment units to be used to materialize NS templates, but it also defines the
implementation-specific methods and callbacks that can be executed on an xNF, and the models of its
configuration. In other words, xNF templates represent a sort of glue between NFV-driven LCM operations
to instantiate or remove artefacts from the ecosystem (e.g., creating a RAN NS in a new area), and
management operations affecting the configuration of running xNFs (e.g., add a new 5G subscriber, add a
new policy, etc.).

Each of these operations might include a variable number of different actions to add NSI instances (Day 0
and 1 actions), to change the configuration settings of xNFs and to retrieve information from the deployed
xNFs (Day 2 actions), as well as to remove one or more deployed NSls.

3.4.2 The NFVCL Architecture

The NFVCL internal architecture (Figure 3-38) encompasses the meta-models introduced in the previous
Section. A first module, named NFVCL North Bound Interface aims at exposing CRUD REST APIs for ecosystem
LCM trough the methods defined in the Blueprint Category meta-models that are available and onboarded
to the NFVCL. Among these methods, the ecosystem creation and deletion are mandatory (and correspond
to HTTP POST and DELETE messages).
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Figure 3-38: The NFVCL internal architecture.

The NFVCL Topology offers resources needed by the ecosystems through several lists. The VIM List offers the
possibility to deploy VMs to the NFVCL. This functionality is used by Blueprints to deploy what is requested
by the user (e.g., a K8s cluster with 1 Controller and 2 Workers for a total of 3 VMs). We can have a list of
VIMs associated to an area, in this way, the user can select the area in which the Blueprint will be deployed.
In the case of multiple VIM for the same area, the first one is used. The K8s List contains all the K8s clusters
that can be used by Blueprints to deploy Helm Charts. As for the VIM List, every K8s cluster is associated to
an area and the user can select the one to use. The Net List is used to keep track of the networks available in
the VIMs. Networks can be added manually, if already present, and can be also added and created by a
Blueprint, if needed. The Metric Server List contains Prometheus instances that can be used to configure
metrics exporters on Blueprint Resources. Finally, the Physical Device List contains physical network
functions, for example HW-based UPFs.

The Blueprint Lifecycle Manager takes care of all the requests towards blueprints, from creation to Day-N
operations. This component also allows for cross-blueprint interaction (even creation and deletion).
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The MongoDB database stores all dynamic vital information for the operation of the NFVCL. The two
main collections to be saved are the status for the topology and, for every instantiated blueprint, the
status and the topology template. The saved data of the blueprint can also include past actions, like
executed LCM primitives.

The Blueprint handles and serializes incoming LCM initialization/change requests on the ecosystem. In
particular, it is in charge of binding any supported blueprint category method into a coordinated set of
multiple implementation-specific operation requests against resources in the topology, the LCM of NFV
Network Service Instances (NSI), or configuration changes within one or multiple xNFs.

The Provider Aggregator is a layer in charge of abstracting the virtualization and K8s providers in a single
interface accessible from the blueprint to create and configure its resources. In more details, the
Virtualization/VM Provider is used to deploy the same blueprint type on different VIM types (currently
OpenStack and Proxmox) without the need to adjust the blueprint code, and the K8s/Helm Provider
embodying the same role for Kubernetes.

3.4.3 Blueprint Deployment and Lifecycle Management

At the time of writing, the NFVCL supports three open-source cores: Free5GC, OpenAirinterface (OAl) and
SDCore. Moreover, different deployment options are available for the UPF, namely, as a VM or a or a pod on
a K8s cluster. For the sake of brevity, in the following we will analyse the creation process and the Day-2
operations at a general level, highlighting, if necessary, any operations that are specific for a certain core.
Moreover, excluding the SBA, which is strictly deployed as a pod on a K8s cluster, the other components can
be deployed as VMs or pods. The VM Provider and Helm Provider are the components created to manage
VM and pod operations in the NFVCL. The following description accounts for a case in which gNB and UPF
are deployed as VMs, but the flow charts reported in Annex A report the pod deployment as well. From the
procedure standpoint, the steps are very similar; the implications for the performance are outlined in the
following section.

As mentioned above, the NFVCL can automatically drive the creation of a core, the additional calls performed
by the VM and Helm providers and related lifecycle operations, (hereinafter referred to as Day-0, Day-1 and
Day-2, respectively). It is worth pointing out again that the following description represents completely zero-
touch procedures that produce fully working configurations. The workflows reported in Annex A also show
the number of generated code lines.

The core creation process orchestrates the deployment and configuration of essential 5G core components
using a combination of blueprints and infrastructure providers through the interaction of blueprint modules,
VM and Helm providers. Supported VM providers are OpenStack and Proxmox. This automated workflow
ensures the seamless setup of such essential components, namely the SBA, the router and the UPF.

The operation begins with the GENERIC_CORE Blueprint, which initiates the creation sequence of the
GENERIC_UPF Blueprint. In turn, the UPF Blueprint initiates the creation of the GENERIC_ROUTER Blueprint.
These nested calls are also important during the core deletion phase, because blueprints store a hierarchical
structure of their child blueprints, allowing for the correct deletion of each deployed component.

The VM provider manages the creation and configuration of the router VM, after which the router blueprint
makes its details available via a callable function. Once the router is ready, the UPF blueprint proceeds to
provision its own VM. To enable data routing through the network, the UPF blueprint interacts with the
router blueprint to request the addition of routing information. The router is reconfigured accordingly, and
confirmation is sent once the new routes are in place. Upon successful creation and configuration of the UPF
and routing infrastructure, the UPF blueprint notifies the CORE blueprint, which then queries the UPF for its
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connection details. With this foundational network layer established, the CORE blueprint proceeds to deploy
the core network components by instructing the Helm Provider to install the core Helm chart. This action
represents the deployment of the main 5G core services.

Finally, the CORE blueprint coordinates with the GENERIC_GNB Blueprint to configure it. This involves the
VM Provider once again, which handles the underlying configuration of the GNB VM. When configuration is
complete, the GNB blueprint confirms readiness to the CORE blueprint.

This end-to-end process results in a fully provisioned and configured 5G core network, complete with UPF,
router, gNB, and core services.

To add a DNN, the GENERIC_CORE updates its values according to the new DNN value, then send them to
the Helm Provider to update the pods accordingly.

To add a slice, the GENERIC_CORE updates its values according to new slice value then sends them to the
Helm Provider to update the pods. Once the pods are successfully updated, the GENERIC_UPF Blueprint must
also be updated to align with the new configuration. However, before proceeding with the UPF update, a
routing validation must be performed to ensure that the network paths are correctly established and
consistent with the new slice configuration. Additional operations are required by some of the available
cores. Namely, for Free5Gc is necessary to restart the SMF after each UPF reboot. This is otherwise the
connection between the two components will not be stabilized. OpenAirinterface instead always requires a
UPF restart when core data is changed, which causes pods to restart, for the same reason as Free5Gc.

The addition of a new TAC is initiated by the GENERIC_CORE with the creation of a new UPF instance. Then,
the GENERIC_UPF creates a new router blueprint instance (router_5g). The GENERIC_ROUTER then contacts
the VM Provider to create a new VM for the router. Once the VM is created, it is configured by the VM
Provider.

Next, the GENERIC_UPF asks the VM Provider to create and configure a VM for the UPF component. Once
this VM is ready, the GENERIC_UPF Blueprint requests the GENERIC_ROUTER to add routing rules to enable
data routing. The router instructs the VM Provider to configure these routes, and confirmation is returned
when the configuration is complete.

After the routing is set up, the GENERIC_UPF notifies the GENERIC_CORE that the UPF is ready. The
GENERIC_CORE then retrieves the updated UPF information and uses this data to create new configuration
values for the Helm Provider to update the core Helm chart. The Helm Provider applies the update and
confirms that the values have been successfully updated.

Once the core configuration is up to date, the GENERIC_CORE initiates the configuration of a new GNB by
coordinating with the GENERIC_GNB.

After configuration is completed, the GENERIC_CORE Blueprint acknowledges that the entire process,
including the addition of the new TAC, has been successfully completed.

Adding a UE is different depending on the Core you're considering. SDCore also includes subscriber data
among its values, so in its case, simply adding the new data and launching a pod update will suffice. Free5GC
and OpenAirinterface, on the other hand, have the UDR that exposes the APls needed to add a new
subscriber. The process for deleting a UE is the same.

To delete a TAC, the GENERIC_CORE call the delete function on the GENERIC_UPF associate at that area. The
GENERIC_UPF also calls the delete function on the GENERIC_ROUTER associate at that area. The
VM_PROVIDER first deletes the GENERIC_ROUTER and then the GENERIC_UPF, after that GENERIC_CORE
updates his configuration and sends it to HELM_PROVIDER to update pods.
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This deletion operation follows the hierarchical structure of the blueprints, allowing for the correct deletion of each
deployed component. The "final_cleanup" function is called as the last operation when deleting a core component
and is used to delete the resources instantiated on the provider on which that component was running.

Deleting a slice begins with deleting it from the core values. It is then necessary to update the values of the
UPF associated with that slice and the routing rules on router.

Deleting a DNN first involves removing it from the GENERIC_CORE values followed by updating the pods. The
same procedures are applied for the addition and deletion of a UE.

The core deletion workflow is initiated by the GENERIC_CORE Blueprint that sends a request to the
GENERIC_UPF Blueprint to delete its blueprint. The GENERIC_UPF Blueprint, in turn, triggers the deletion of
the GENERIC_ROUTER Blueprint. Once the VM is destroyed, the router blueprint performs final cleanup, and
the blueprint is removed. Next, the GENERIC_UPF Blueprint proceeds to request the VM Provider to destroy
its own UPF VM. The VM Provider confirms the VM destruction, after which the UPF blueprint performs its
final cleanup tasks and is marked as deleted. After the UPF has been removed, the GENERIC_CORE Blueprint
coordinates with the Helm Provider to uninstall the core Helm chart. Finally, the GENERIC_CORE Blueprint
performs its own final cleanup. At this point, all the associated components have been properly removed,
and the entire network teardown process is complete.

Results

Several testing campaigns have been run to assess the performance of the NFVCL. Deciding how to carry out
such an assessment is a non-trivial task: the obvious would be to compare the time required for deploying and
performing lifecycle operations on a 5GS manually and in the presence of the NFVCL; however, it is very hard
to compare an automated and a manual operation, as the former is somewhat deterministic while the latter
heavily depends on the skills/speed of the operator. This is likely the main reason why a comparison of the time
it takes to perform lifecycle operation in different open-source cores is not yet available in the state of the art.
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Figure 3-39. Execution time of lifecycle operations performed on Free5GC.
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Figure 3-40. Execution time of lifecycle operations performed on OpenAirinterface.
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Figure 3-41. Execution time of lifecycle operations performed on SDCore.
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In order to proceed with the assessment and, at

7928 the same time, contribute to the body of

800
= 700 0874 = knowledge on upcoming 5G technologies, we
EGOO decided to first provide a breakdown and a
§ 50 comparison of the time needed to manage the
§4°° 2764 lifecycle of three well-known open-source
‘_,3 zzz 208.7 223.5 cores, namely Free5GC, OpenAirinterface (OAl)
100 and SDCore. Following, we provide a
0 breakdown of the number of code lines
cos mymo6C onl sDCore automatically generated by the NFVCL to

5G Core

configure the 5GS at runtime to highlight the

Figure 3-42. Sum of the execution times categorized in the ~ benefits of automation. Figure 3-39-Figure 3-41

above Figures. show the average time (over 10 tests) that it

takes to perform the lifecycle operations

described earlier in this section. Day-0 operations are represented with a dotted pattern, Day-1 with diagonal

stripes and Day-2 is solid. The first, most prominent feature is the higher time required by the cores that

deploy the UPF in a VM, which is experienced for all the cores: indeed, the creation of VMs takes longer than

spawning a pod on K8s. In order to minimize this overhead, the NFVCL allows to work on already available

execution environments and VM images, however the hypervisors are responsible for the additional
deployment time seen in these results.

It is also worth noting that OAIl requires additional operations because its UPF contains information
related to the slice, which means it has to be rebooted upon changes to the slices and TACs. OAl is also
less “stable” than the other cores, hence sometimes the same operations need to be repeated in order
to avoid misconfigurations. Free5GC also requires additional operations as the SMF needs to be restarted
upon update of the UPF, but the resulting overhead is negligible and does not emerge from the results
in Figure 3-39-Figure 3-41.

In total, VM deployments take three times as long, as shown in Figure 3-42. Although OAI requires more
steps to perform the same lifecycle operations, the total time that it takes is just slightly higher with respect
to Free5GC and SDCore. On the other hand, while Free5GC and SDCore performs the exact same operations,
their execution times slightly vary: for example, the core creation and deletion take longer for Free5GC but
other Day-2 operations (e.g., UE addition/deletion) take longer for SDCore because Free5GC offers specific
APIs for UE management while SDCore requires pod reboot upon configuration updates.

Further considerations can be drawn by summing the execution times on a per-Day basis and showing the
minimum and maximum values along with the averages, reported in Figure 3-43 (UPF deployed in a pod) and
Figure 3-44 (UPF deployed in a VM). For both VM and pod deployments, Day-0 operations have the highest
deviation from the average, especially for Free5GC. While the three core releases have very similar values in
Figure 3-43, when the UPF is deployed in a VM OAI takes less time than Free5GC and SDCore, because the
Docker setup is more complex and time-consuming, and Free5GC has a less deterministic Day-0 execution time.

Day-1 operations have quite similar minimum, average and maximum values for the three cores, and the
differences among them are almost the same when the UPF is deployed in a pod or in a VM. The same can
be said for Day-2 operations, with OAI taking slightly longer with respect to the other ones especially in the
case of pod deployment.
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Figure 3-44: Distribution of the execution times for the three 5GSs with the UPF deployed in a VM.
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Figure 3-45: Number of code lines generated by the NFVCL for the automated configuration, deployment and

orchestration of the three tested cores.
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Finally, it is worth highlighting the most distinguishable feature of the NFVCL, namely automation. Figure
3-45 reports the number of code lines that are created in a zero-touch fashion for the three cores. The
difference between a VM or pod deployment is around 500 lines for all cores, with Free5GC and SDCore
presenting similar values while the OAl deployment requires the generation of more than double code
lines, which is consistent with the higher number of required Day-1 operations. Automation of
configurations is particularly useful during experimentation campaigns: along with the reduced times
achieved by onboarding ready-for-use VMs, it allows experimenters to neglect the specificities of each
core, reducing the time it takes for configuring the tests as well as the chance of errors. For instance, if we
consider the lifecycle of a UPF deployed in a VM, the NFVCL allows to skip the VM creation, installation of
the required, core-specific dependencies, Docker installation, image download and Docker compose
editing. Moreover, it enhances the reproducibility of the tests, as the same configuration can be passed
along and used with minor changes specific to their own execution environment (e.g., network names,
topologies, etc.).
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4 Network Slice Lifecycle and Power Management in Serverless
Environments

4.1 Stateful FaaS for Energy Consumption Minimisation
4.1.1 Mathematical Modelling and Analysis

Serverless computing and the FaaS programming model are popular in the cloud [10] and they have attracted
significant interest also at the edge [11]. With FaaS an application is made of a sequence of stateless function
calls, which can be arranged in chains (i.e., f1 --> f2 --> ... --> fN) or more complex structures, like DAG [12].

However, realistic applications typically do need function execution to be associated with some state,
especially for edge applications, such as Al and real-time analytics [13].

) >
f()
Y s
state
broker () storage
——store (1)—»
fetch (1) |
<_and state
@
(]
3
s
9 —store state—f

Figure 4-1: Example of how to realize stateful processing with stateless FaasS.

A straightforward solution to this problem, which we call stateless Faa$, is to maintain the state on an
external storage system to be accessed on demand by the functions as part of their execution, as
explained, e.g., in [14]. Such a deployment option is illustrated in the example in Figure 4-1, where
function f(.) requires input from two dependencies (1 and 2) and has two outputs (3 and 4). When the
function receives input 1, it is kept temporarily in the state storage. Once input 2 is received, full
processing can occur combining the latter with the previous input 1 and the state, to produce the final
outputs 3 and 4, after updating the state on the storage.
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Figure 4-2: Example of stateful Faas.

In common serverless computing platforms, function invocation happens through an HTTP command issued
on a web server running in a container. Due to the lack of state, the same container can serve multiple
users/sessions seamlessly, and the orchestration platform can easily perform autoscaling of such runners,
i.e., decreasing or increasing the number of instances per function to match the instantaneous demand. An
alternative to this strategy is dedicating each user/session to a runner, thus realizing what we call stateful
Faa$. As illustrated in the example in Figure 4-2, with this model there is no need to fetch/update the state
or store temporary input from previous function calls. In principle, the stateful FaaS model has two
inconveniences. First, the number of runners may be much higher than that with stateless FaaS, because the
former cannot exploit statistical multiplexing of multiple users/sessions like the latter. Second, if a runner is
migrated from one node to another for any reason, e.g., system resource optimization, its internal state must
be moved to the target host.

ephemeral
orchestrator fa() state f5()
storage
——stop f4—>
store—p
start fp
[ —fFetch——

task f does not operate properly during migration
(service degradation)

Figure 4-3: Migration of a stateful FaaS runner from node A to node B.
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We show an example in Figure 4-3, where the orchestrator migrates a runner for the function f(.) from node
A to node B. First, when stopping f(.) on node A the state is stored temporarily on an external system, which
is then queried by the new instance of function f(.) on node B upon creation. With this solution, there would
be a period during which the task performed by f(.) is not available. More sophisticated protocols can be
devised [15], but, in any case, they would incur additional complexity or overhead, which is not needed with
stateless FaaS. The impact of state migration on energy consumption is captured by the mathematical model
defined and evaluated later.

application

fi1() > fa(')

4
&

stateless FaaS deployment

state storage
7

nodeA .-~ i node B
v <
f1() f2() f3()
Y A\ \\ A
2.3 4 5 6 7
1 8
/ Y
stateful FaaS deployment
node A node B
f1() f2() f3()
L A Al
3 4 56 9 10
Y
2 7 8

system dataplane
1 12
/ 4

Figure 4-4: Deployment of a three-function chain (top) on two processing nodes through stateless FaaS (middle) and
stateful FaaS (bottom).

We now illustrate deployment with stateless vs. stateful FaaS with the help of the example in Figure 4-4, with
a three-function chain application running on two nodes A and B. In the example, we have one runner per
function: node A hosts functions f1 and f2, and node B hosts function f3. With stateless FaaS, an intermediate

101096925 — 6Green — HORIZON-JU-SNS-2022 66 of 158



D2.3 — The 6Green Enabling Technologies 66

layer is needed to dispatch function invocations to one of the matching runners: this is represented by a
logical component called broker, borrowing the terminology from [16], which is an early study on the
realization of distributed computing in pervasive systems. As can be seen, network traffic is generated at
each function call for state access, on the state storage, and for invoking the next runner through the broker.
On the other hand, with stateful FaaS, we need logical components to mesh the runners, which can be within
a node or at a system level. Network access for accessing the state is unnecessary because the state is
embedded within the runner. Furthermore, when a runner invokes another on the same node no network
access is needed, too.

We now define a mathematical model to estimate the energy consumed in a time horizon T for executing
the applications that enter/leave the system during that period. The model is intended to be used to evaluate
high-level deployment strategies and run-time orchestration policies and, as such, it is not intended to
provide quantitatively accurate results, but rather qualitative guidelines to drive algorithm design and high-
level resource provisioning.

i
app a
®

[\

Figure 4-5: Application model. An app a consists of functions arranged in a graph. If function u calls function, v then an
edge exists, and its weight d ,,,,, is the amount of data exchanged. Each function v has a state of size Sg,.

We assume the workload is made of applications (apps for short) that enter and leave the system dynamically
at given times t,ll and t,Tl, for app a. An app a consists of some functions (or tasks) arranged in a directed
dependency graph G, (V,, E,). Each vertex v € V, is a task that depends on its predecessors (incoming edges)
and produces output towards its successors (outgoing edges). The amount of data exchanged when task u
calls its successor task v is d gy, , in bits. Without loss of generality, to have a more compact notation, we
assume that the invocation rate is common for all the tasks within app a and equal to A,. Task v has an
internal state of size s,,, in bits, and a processing request equal to 7, in fractions of CPU. An example of a
dependency graph is illustrated in Figure 4-5. In the following, we consider the system as dynamic,
characterized by a series of discrete events happening at time t, € {ty, ..., ty}, where ty is the end of the
period of interest and the other events correspond to an application entering or leaving the system. Between
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two consecutive events the power consumption remains stable (in a statistical sense) and we can
characterize its average value through two step-wise functions, which are constant from time t; until the
next event t 1 : a(ty) is number of edge nodes used at time ¢, to serve the active applications, where each
node has a processing capacity C, in fractions of CPU; S, (t;) is the average network traffic consumed by
application a in the unit of time. We assume that the power consumption of an edge node is binary: if it is
used, i.e., it serves at least one stateless FaaS or hosts at least one stateful FaaS runner, then it consumes a
peak power; otherwise, if it is unused, it does not consume power at all.

Regardless of the deployment strategy, we can then define the total energy consumed in the system as follows:

N-1

3 {PN a(ty)

+Eg Y Balti)I(t) < te <t1)|(teyr — tr),
acA

where Py is the power consumption of an edge node and Eg is the per-bit network transfer energy, and
I1(:) € {0,1} is an indicator function equal to 1 if and only if the condition is true. We focus on energy
consumption assuming that there are no constraints on the availability of processing and network resources.
In other words, we assume that the system can accommodate all the incoming requests, hence no admission
control is needed. The notation used in the paper is summarized in Table 3.

Table 3: Notation used in the section. The last two rows are used only with Stateful Faas.

Parameter Description Unit
Gao(Va, Eo) | Task graph of app a. V,, is the set of tasks,
E, represents the invocation dependencies
Aa Invocation rate of app a s1
Tav Processing request of task v at app a CPU
Sav State size of task v at app a b
dauv Invocation data size from task u to v at app b
a
t Arrival time of app a s
t Leaving time of app a 8
A Set of all the applications in the period of
interest

Altr) Set of applications active at time tj,

a(ty) Number of edge nodes active at time #j,

Ba(tr) Traffic rate of app a at time £y b/s
Py Power consumption of a node w
Ep Per-bit network transfer energy uW/b/s

E Total energy consumed in the period of J
interest
C Processing capacity of a node CPU
(7 Time instant of the k-th event s
A Defragmentation interval s
ZTav(tr) Mapping function indicating the index of the
node to which task v of app a is allocated
at time £y
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For stateless FaaS we adopt a simple model that captures well its distinguishing features. Specifically, we
assume that the number of active nodes needed at time tj is the minimum possible, i.e.:

tk) = Z Z Tav

aEA(tk) vEV,

where A(t;,) is set of applications active at time t;,. The inner summation is the total processing request of app a,
which is then summed over all the applications and, finally, divided by the edge node capacity C. This implicitly
assumes that no edge effects exist in horizontal scalability and the broker layer can distribute the load appropriately
among the multiple task instances. On the other hand, the traffic rate of app a at time t;, is given by:

fk) = Z Sav + Z uav

vEV, (u,v)EE,

which is the sum of the traffic generated for the state access (first term) and function invocation between
each node and its successors (second term), in the unit of time, as given by the invocation rate 4,.

The model with stateful FaaS is more complicated because it depends on how tasks are assigned to edge
nodes for three reasons. First, function invocation only consumes network resources if the two tasks are not
assigned to the same edge. Second, since a stateful FaaS runner cannot be split/recombined, assigning the
active tasks to available nodes to minimize the number of nodes used is akin to the bin-packing problem,
which is known to be NP-complete. Finally, as active apps leave the system, fragmentation occurs (a term
inspired by the similar effect in the memory management process of operating systems), i.e., edge nodes are
only partially allocated: this is sub-optimal for energy consumption. To solve this problem, we foresee a
defragmentation process to happen periodically, with the period equal to A, which is a system configuration
parameter: during defragmentation, the active apps are rearranged to reduce the number of edge nodes
needed, thus saving energy in the future. However, this process consumes energy because the state of some
runners may have to be migrated from one node to another.

Now we introduce a last bit of notation: let x,, () be a variable that indicates what edge node (using an
arbitrary indexing scheme) hosts the runner for the task v of app a at time t;. In time intervals where the
app is inactive, i.e., before it enters or after it leaves the system, the variable is undefined. The values of
X gy (tr) must be determined through two orchestration decision-making algorithms: i) when an app enters
the system, the algorithm chooses where to deploy each of its tasks, by either selecting edge nodes already
active (hosting other tasks) with sufficient residual capacity or activating new edge nodes; ii) upon
defragmentation, the tasks of active applications can be migrated to other edge nodes to reduce the total
number of the active ones. Determining an optimal policy for either of these decision processes has the same
complexity as finding an optimal allocation for a bin-packing problem, as already mentioned. We propose to
use the following simple heuristic based on the best-fit policy:

Stateful | best-fit algorithm:

— When an app enters the system, for each task we select the active node that hosts one of the
predecessor tasks, if any (to save network traffic for function invocation). Otherwise, we select the
active node that leaves the smallest residual capacity, if any, breaking ties arbitrarily. Otherwise, we
deploy the task on an inactive node.

— Upon defragmentation, we apply the above algorithm policy to all the active apps, in arbitrary order.
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We then derive the number of active nodes at time t; as:

alty) = ‘{ﬂzav(tk),‘v’a € Alty),

where | - | indicates the cardinality of the corresponding set, and the traffic rate of app a at time ¢, is:

Ba(tr) = Z Sav " 1 (ZTav(tk) # Tav(te-1)) +

t —t
k+1 =Yk Jev,

z dauv ' ]I(xau(tk:) 7£ wav(tk)) )

(u,v)EE,

The first addend considers the state migration if the task was moved since the previous time event (by design,
this can happen only during the defragmentation procedure) and the second addend considers the network
traffic for function invocation, only if the task u and its successor v do not belong to the same node.

We conclude the section with the evaluation of the performance, in terms of energy consumption, of the
stateless vs. stateful approaches, indicated as stateless| min-nodes and stateful | best-fit, respectively. For
reference purposes, we also include two alternatives: stateless|max-balancing, as implied by the name,
refers to a stateless FaaS system that seeks to maximize load balancing [17]; stateful|random is a variation
of the stateful policy above, where there is no periodic defragmentation and the tasks of incoming apps are
assigned to edge nodes at random, respecting the maximum capacity , and a new node is made active only
if there is none with sufficient residual capacity. For full reproducibility of results, the source code of the
simulator and the scripts and artifacts are available publicly as open source on GitHub?3.

The workload is created following the model in [18], which is inspired by real traces made available by Alibaba
and broadly used in the literature, tuned as follows: the arrival and lifetime of apps follow a Poisson
distribution, with average 1 s and 60 s, respectively; both the state size and the data invocation size are
derived from the memory requirements produced by [18], by applying multiplicative factors called S (state)
and D (data invocation), where D is always set to 100, which corresponds to the range [2, 303] kB, and S
is expressed through the ratio S/D , which is 100 by default, in which case S would be in the range [0.2, 30.3]
MB. The invocation rate is 5/s and the capacity of a node is set to 1000, which is sufficient to host any single
task, whose requested capacity is drawn from an empiric distribution with a maximum value of 800. The
edge node power consumption was set to 100 W, which is typical for a small device such as an Intel NUC;
estimating the network consumption is much more complicated because it depends not only on the
devices but also on the overall networking infrastructure: based on the results from a recent study [19],
we have experimented with different values in the range [0.05, 5] uW/b/s. Each experiment lasted 1 day
of simulated time and was repeated 1000 times; the plots show the average value across the repetitions
with a symbol and the low (0.025) and high (0.975) quantiles as error bars. All the values above are to
be considered unless specified otherwise.

In Figure 4-6 we show a and B with different combinations of A and the S/D ratio, only with
stateful | best-fit. § is affected significantly by both A and S/D: when the state is heavier (S/D = 100), the

13 https://github.com/ccicconetti/stateful-faas-sim (experiment 001)
14 We omit the subscript a as we plot the average traffic rate
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network traffic is very high with small values of A (note the log scale on the y-axis) because frequent
migrations are expensive. This effect is much less prominent with §/D = 10 and S/D = 1, because of the
smaller state sizes compared to the invocation data sizes. With increasing A, all the curves initially decrease
and then, increase again until they converge to the same value (as the defragmentation becomes more
sporadic, the state size becomes less important). The minima of the curves depend on the specific value
of /D . The number of active nodes is independent of S/D and always increases with A. The choice of A
incurs a trade-off in the energy consumption of computation vs. network. In the following, we set the value
of Ato 120 s, i.e., twice the average app lifetime, which appears as a reasonable trade-off between
network vs. processing consumption.
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Figure 4-6: Simulations: a and f3 vs. defragmentation period A.

In Figure 4-7 we show the energy consumption with increasing Ez while keeping 100 W. The energy
consumption increase with a higher per-bit-rate cost is higher with a stateless deployment, especially in the
max-balancing flavour, and is very modest with a stateful deployment. In the latter case, we can see that the
best-fit policy reduces energy consumption by about 2 compared to random, for all values of Eg. In the
following, we only consider the two extremes of the E range.
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Figure 4-7: Simulations: energy consumption vs. Eg.
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Figure 4-8: Simulations: energy consumption vs. S/D, Eg = 0.05 uW/b/s.

The impact of the state size, compared to the data invocation size, is exposed in Figure 4-8, with low per-bit-
rate energy cost, i.e., Eg = 0.05 uW/b/s. A stateless deployment, with a min-nodes policy, is the best option
only for §/D < 10 and only by a small margin compared to stateful|best-fit. On the other hand, as S/D
increases significantly above 10, stateless deployment becomes significantly more energy-hungry, due to the
cost of accessing the state upon each function invocation. With S/D > 100, stateless is outperformed even
by stateful|random. The max-balancing policy follows the same trend as min-nodes and is always above the
latter, though the gap reduces slightly as S/D increases. From an energy consumption perspective, stateful
deployments are almost insensitive to the size of the applications' states.
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Figure 4-9: Simulations: energy consumption vs. average application lifetime.

In Figure 4-9 we report the measurements obtained with min/max Ejy values for stateful policies (with
stateless, the values with maximum Ejg are well above the plot -axis range) when increasing the
application lifetime from 15 s to 120 s. As expected, all the curves increase with the load. Both
stateful | best-fit curves lie at the bottom and gain an increasing margin compared to all the others as
the load increases. The second-best option is stateless|min-nodes (only with minimum Ejg), while the
stateless|max-balancing performs worst.

101096925 — 6Green — HORIZON-JU-SNS-2022 72 of 158



D2.3 — The 6Green Enabling Technologies GGreen

120

T

=y stateless|min-nodes —a8—
= \ stateless|max-balancing —e—
< 100 stateful|best-fit
= \ stateful|random 7
£ .
n
]
o 80 X
< \\
=
2
g 60
£
3
]
§ 40
o
3 \ -
& —
S i —
o 20 T
> —e— - —
8

0

800 1600 2400 3200 4000

Node capacity (100 = 1 core)

Figure 4-10: Simulations: energy consumption vs. node capacity.

Finally, in Figure 4-10 we show the energy consumption (only due to processing) with increasing node
capacity from 800 to 4000. All the curves decrease because with increasing C the number of nodes required
decreases, as well, while we keep the power consumption per node Py constant. It is interesting to note that
the curves are almost overlapping in pairs. At the bottom (less energy consumed) we find stateful | best-fit
and stateless|min-nodes: in fact, they both aim at reducing the edge computing infrastructure energy
consumption. Stateless has a slight gain compared to stateful, but it is more than compensated by a lower
energy efficiency from the network traffic perspective. At the top (more energy consumed), the two
comparison systems show similar performance, which can be explained by the fact that they both try to
spread as much as possible the load among the active nodes: stateless|max-balancing does this explicitly,
stateful|random implicitly. A stateful deployment, with a best-fit allocation strategy, can be as efficient as a
stateless one despite the fragmentation issue.

4.1.2 Experimental Evaluation

We now illustrate the results obtained with a testbed of small edge nodes, related to the practical comparison
of the stateless vs. stateful serverless computing paradigms.
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Figure 4-11: Testbed used for the evaluation of stateless vs. stateful serverless computing.
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The testbed is hosted by CNR-IIT and is illustrated in Figure 4.11. It includes 21 hosts in total:

— 1 Virtual Machine running on an Intel server in the CNR data centre, interconnected with the other
hosts via a 1 GbE LAN.

— 10 NVIDIA AGX Orin 64 Gb embedded devices.
— 10 Raspberry PI 5 single-board computers.

The following ancillary devices were used for the experiments:

— Cisco L2 switches, in stack mode, providing all the hosts with 1 GbE (RPi) and 10 GbE (Orin)
connectivity.Raritan PDUs providing the hosts with power and monitoring the active power of each
individual device.

The experiments have been executed with the EDGELESS®, which is a platform that allows the development
and deployment of stateful agents in the edge-cloud. A single cluster was configured including all the hosts,
managed by a single orchestrator running on the VM. The scripts to run the experiments and to analyse the
data are all available publicly, together with the artifacts of our experiments, on a GitHub repository?®.
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Figure 4-12: Workflows used for the experiments: (a) stateful, vs. (b) stateless.

15 https://github.com/edgeless-project/edgeless/
16 009-6green-state, 010-6green-calib, and 011-multicore
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In Figure 4.12 we illustrate the two workflows (applications) used for the experiments. In (a) the workflow
consists of a trigger function that generates messages with Poisson-distributed interarrival times. The
message is sent to a stateful function that performs a processing operation on its internal state. In particular,
the state consists of a vector of 32-bit floating point numbers, initialized with random values between 0 and
1, and the operation is the element-wise computation of the trigonometric sin() function. After the operation
is complete, a message is generated towards the trigger function to record message latencies. The workflow
in (b) is functionally equivalent but the state, i.e., the vector, of each application is kept in an in-memory Key
Value Store (KVS) hosted on the server VM. Therefore, the stateless function is forced to read the vector
before each operation and update it with the new values afterwards. The workflows were configured with
annotations that forced the orchestrator to assign the trigger function instances to the VM, while the
stateful/stateless function instances to the edge nodes in a random fashion.

Calibration experiments. We have run initial experiments to calibrate the system parameters, whose results
are reported in the following.

First, we have created an incremental number of stateful workflows, one every 60 seconds, deployed on the
same Orin. Each workflow had a rate of 80 Hz, with a state of size 100k (i.e., the vector had 100k elements,
corresponding to an in-memory size of 400 kbytes).
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Figure 4-13: Calibration experiment with increasing stateful flows. Left: workflow latency. Right: Throughput.
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In Figure 4.13 (left) we show the workflow latency over time, which increases only slightly until the node
becomes overloaded after the 10-th workflow is added. Similarly, in the right part we can see that the
throughput of the workflows is stable until the last flow, with spurious spikes only occurring whenever a new
flow is added for edge effects in post-processing the data.
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Figure 4-14: Calibration experiment with increasing stateful flows. Function execution (left) vs. transfer (right) time.

In Figure 4.14 we break down the workflow latency in the two main components, which are the time needed
for the processing operation (left) and the latency introduced by the network and trigger function (right),
called function transfer time. The latter has a more stable behaviour than the former, with spikes that are
caused by the initialization of the state when a new workflow is created. When the system becomes unstable,
after the last workflow is added, the function execution time remains bounded, but the transfer time grows
indefinitely.
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Figure 4-15: Calibration experiment with increasing stateful flows. Left: active power. Right: CPU usage.

Finally, in Figure 4.15 we report the active power (left) and CPU usage (right). It is interesting to note that
there is a clear positive correlation between these metrics, whose values follow the same qualitative trend.
This confirms the intuition that the active power of AGX Orin devices is a linear function of the CPU usage,
with an offset given by the idle consumption.
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We now report the results from a second batch of calibration experiments. We used both Orin and RPi
devices, but always one at time for each experiment. Again, we only deployed stateful workflows with a
message rate of 80 Hz. We repeated multiple experiments, with 1 vs. 10 workflows, and with variable state
sizes from 1k to 1M elements.
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Figure 4-16: Calibration experiments with various state sizes. Left: workflow latency. Right: network traffic.

In Figure 4-16 (left) we report the workflow latency. As can be seen, the latency increases with the state size,
because more sin() operations are needed. The RPi 5 device can withstand greater state sizes than the AGX
Orin, which can seem counterintuitive because the latter is more powerful. However, the latter has 8 CPU
cores, while the RPi 5 has only 4, therefore the per-CPU processing power of the RPi 5 is greater. We note
that, in EDGELESS, function instances execute in a WebAssembly run-time environment that is designed for
single-thread operation. In the right plot, we report the network traffic per node, which takes into account
the messages exchanged in the data plane, as well as the control and management of the EDGELESS node
services. The traffic is not affected by the state size, because the functions are stateful. There is a light
decrease only when the system is unstable.
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Figure 4-17: Calibration experiments with various state sizes. Left: active power. Right: CPU usage.
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Finally, in Figure 4-17 (left) we report the memory occupancy of the EDGELESS service running in the nodes,

in percentage of the overall memory available. As expected, the occupancy increases with the state size, but

the increase is modest compared to the baseline, because of the relatively small size of the state footprint in
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memory; even with 1 M elements, each state occupies 4 MB, while the RPi 5 is equipped with 8 GB of RAM
and the AGX Orin with 64 GB, shared between CPU/GPU. The right plot shows the CPU usage, which on the
other hand increases significantly with both the state size and the number of workflows, because of the CPU-
bound nature of the application used in the experiments.

Full experiments. In the full experiments 20 devices (10 RPi + 10 Orin), with 20 and 200 workflows, state size
of 10, 1k, and 100k elements, and we compared the two patterns stateful vs. stateless. In particular, for the
stateful case we deployed precisely the given number of workflows (20 or 200), each with a message rate of
100 Hz, where function instances are assigned at random to nodes by the orchestrator. On the other hand,
to mimic a typical serverless computing deployment, for the stateless case we forced the orchestrator to
deploy exactly one workflow on each node, then we adjusted the message rate to emulate the same load as
with a stateful workflow.
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Figure 4-18: Full experiments, stateful vs. stateless. Left: latency. Right: loss ratio.

In Figure 4-18 (left) we show the workflow latency. The results are grouped based on the number of
workflows, 20 or 200, which means an average of 1 or 10 function instances per node; remember that the
assignment of function instances to nodes is done by an orchestration function at random, there it can
happen that some node is loaded more than others. On the x-axis, we indicate labels that specify the
deployment mode, i.e., stateful (L = local state) or stateless (R = remote state), and the state size, from 10
elements to 100k elements. The same format is adopted throughout the analysis. The plot leads us to several
observations, which are confirmed by results shown later:

— Stateful deployment exhibits a significantly lower latency, not only with a large state (e.g., 100k), but
also with a very small state of 10 elements. This is due to the cost of accessing the remote state, even
if the latter is stored in a service in the same LAN as the edge nodes, which is an optimistic scenario.
A more realistic would involve the state located in some cloud-hosted storage service, which would
increase the remote access penalty in terms of latency.

— With a stateful deployment, the latency with 200 workflows is not significantly higher than that with
20 workflows. Rather, with 10 and 1k elements, which have a modest processing cost, the latency is
slightly lower on average, and with comparable spread. Only with 100k elements the tail latency
increases significantly (note the plot has a log-scale in the y-axis), but the average is still similar. This
counterintuitive behaviour suggests that the nodes are not overloaded.

— However, with a stateless deployment, the latency with 200 workflows is significantly higher than
that with 20 workflows, by at least an order of magnitude. Since this cannot be due to the processing
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in function instances, which is the same as in the stateful case, we believe the effect is due to the
contention on the state retrieve/update operations. In fact, when the state is greatest, i.e., with 100k
elements, the system becomes unstable, with latencies growing arbitrarily. Figure 4-18 (right)
confirms this by reporting the loss ratio, i.e., the ratio between the messages received back by the
trigger function (see Figure 4-12) and those emitted by it: stateless with 200 workflows and 100k
elements is the only case with a non-negligible loss ratio.
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Figure 4-19: Full experiments, stateful vs. stateless. Memory occupancy of Orin (left) and RPi (right) devices.

In Figure 4-19 we report the memory occupancy, grouped by node type: AGX Orin devices on the left, RPi 5
devices on the right. Since the occupancy is expressed in percentage, the baselines for the two devices are
different (AGX Orin ones have 64 GB of RAM, RPi 5 devices only 8 GB), but the qualitative behaviour is the
same. With a stateful deployment the memory occupancy increases with the state size, which is fully
expected because the state is kept locally at each function instance; on the other hand, a remote deployment
is independent from the size of the state, which is stored externally. In our experiments, the state has a
modest size compared to the availability, therefore the different memory occupancy difference is barely
noticeable, in the order of 0.1%-0.2%. However the memory requirement of a stateful deployment may
become a limiting factor when the state is either very large or the memory availability on edge nodes is
severely constrained.

orin
i
T num_workfiows
“ = 20 1.5
o - 00 i+ nism_warkfiows
= 20
150 -0
L=l B
"3 B g 12.5 o _
2 - o [
e
E £ 100 o %-
“ 20 8 7 o o 4
] = 58 o o]
& a Q g o o
o - g g g o o o
- ] 5.0 ] o oo
o e o o o o o o
r::%. o o o —_
T D 2.8 o 1 [ | o
WML & S
o wl— — o
] e L] - ] g ] "
O o »\@' = o 1_-\':#- g & ‘;\&5" - & q-\nﬂ"

Figure 4-20: Full experiments, stateful vs. stateless. CPU usage of Orin (left) and RPi (right) devices.
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In Figure 4-20 we report the CPU usage. The results confirm our observations about the latency. In fact, we
see that, in general, the CPU is always underloaded. In relative terms, there is a significant increase from 20
to 200 workflows, due to the extra work; also, the CPU usage increases with the state size, because more
sin() operations are needed. With a stateless deployment and largest state size, i.e., R-100k in the plots, the
CPU usage is the same for 20 and 200 workflows only because the system is unstable: the service rate is not
CPU-bound but rather state-access-bound.
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Figure 4-21: Full experiments, stateful vs. stateless. Network traffic of Orin (left) and RPi (right) devices.

In Figure 4-21 we report the average network traffic per node during the experiment. The results are
comparable between AGX Orin a RPi 5 devices because this metric only depends on the amount of data
required by the workflow, including state read/update operations with a stateless deployment, and for
control/management plane signalling. The network traffic is minimum with a stateful deployment, where it
depends only on the number of workflows but not the state size. Instead, it grows significantly with a
stateless deployment because of the state-related network operations.
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Figure 4-22: Full experiments, stateful vs. stateless. Active power of Orin (left) and RPi (right) devices.

In Figure 4-22 we report the active power. A general observation is that AGX Orin devices have much more
stable power readings, while the RPi 5 devices exhibit erratic measurements. We speculate that this could
be due to DVFS, and other power consumption mechanisms, performed by the RPi 5. Note that both
categories of edge nodes have not been tuned for reduced power consumption and are using out-of-the-box
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configurations. Another general observation is that AGX Orin devices have a much higher baseline power
consumption than RPi 5 devices, 8.5 W vs. 2.5 W, as confirmed by empirical evidence found in web forums.
The results do not exhibit strong correlations of the active power with the deployment model, state size, or
number of workflows, except for stateless deployment with 200 workflows on RPi 5 devices (labels R-10, R-
1k, and R-100k in the right plot).
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Figure 4-23: Full experiments, stateful vs. stateless. Active power vs. CPU usage with 20 (left) and 200 (right)
workflows.

To delve deeper on this matter, we have broken down the active power results per node, instead of
aggregating the data samples in box plots as reported in Figure 4-22. Figure 4-23 shows the average active
power of each node for a corresponding value of average CPU usage, using different colours for the
deployment model and state size, as well as grouping the results for 20 (left) and 200 (right) workflows. With
20 workflows (left plot) we can see about half of the points laying in a straight line, which suggests
proportionality between the active power and the CPU usage: those points correspond to RPi 5 devices, as
can be inferred by active power being lower than 5 W. On the other hand, AGX Orin devices (above 8.5 W)
are basically independent from the experiment characteristics. With 200 workflows (right plot), the AGX Orin
devices remain independent, while the correlation with RPi 5 devices becomes less evident. Comparing these
results with the previous ones suggests exercising caution about the use of CPU usage as a direct indicator of
power consumption with AGX Orin and RPi 5 devices, irrespective of the deployment model and overall load.

4.1.3 Conclusions

We have performed a comparative analysis of two deployment models for serverless workflows: stateless,
which is the state-of-the-art approach where the application’s state is stored at an external service and must
be retrieved/updated when needed, and stateful, where a function instance is deployed for every application
and, thus, can keep its state local. For the analysis, we have used simulation, based on a custom mathematical
model, and testbed evaluation with 20 mixed edge nodes, i.e., Raspberry Pi 5 and AGX Orin devices. The
simulation has led us to identify some key performance trade-offs, especially in terms of power consumption,
depending on the state size and network characteristics. In brief, using a stateless deployment model is never
the best choice, unless the state is very small or the external storage service can be accessed with negligible
performance penalty. The testbed evaluation made this conclusion even stronger. In fact, despite the
optimistic environment for what concerns the access to the storage service (an in-memory KVS in the same
LAN as the edge nodes), a stateful deployment exhibited less latency and no noticeable degradation in terms
of power consumption. We note that there might be cases when a stateful deployment is not possible for
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practical reasons, including insufficient memory availability on the edge nodes to keep the state,
administrative requirements on the application state location (e.g., to comply with GDPR rules), or backward
compatibility with a legacy codebase relying on a stateless deployment model. Finally, we have observed
some correlation between the CPU usage reported by the edge nodes and their power consumption, as
measured by a monitored PDU, but only on come conditions. Therefore, it is not possible to use the CPU
usage as a universal indirect estimator of the power consumption, but more research is needed to find the
right combination of features for this purpose.

4.2 Adaptive RAN Power Management in Serverless Environments

Effective energy optimisation in cloud-native and serverless Radio Access Networks (RANs) requires a
detailed understanding of how individual system parameters influence total power consumption. Key
determinants include the power consumed per radio port on the RRU, the configured MIMO level, the utilised
bandwidth, the adopted TDD split ratio, slicing configuration, OSS user profile, user-generated traffic
patterns, traffic duration, and the associated application behaviour. These factors collectively define the
energy profile of the deployed RAN and are critical for the design of intelligent, adaptive power-management
mechanisms. To assess these dependencies, the project employed the 5G/6G testbed infrastructure
described in section 5.4.1. A comprehensive measurement campaign was carried out to quantify system-
level behaviour, validate theoretical assumptions, and identify optimisation opportunities relevant for
serverless and cloud-native deployments.

4.2.1 Energy Use Patterns on the 5G HW

The first phase of the evaluation investigated the influence of RAN component states and operational
configurations on measured power consumption. Figure 4-24 provides an overview of the results,
distinguishing between the RRH consumption (dark blue line) and the consumption attributable to the two
power supplies of the laaS environment (yellow and green lines).
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Figure 4-24: Energy use patterns —5G HW.
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When the BBU was not active (Step 0), the RRU exhibited a baseline consumption of 68 W under the tested
configuration (band n77, 100 MHz bandwidth, QAM 256 DL/UL, 27 dBm per port). Deployment of the 5G Core
onto the laaS platform (Step 1) affected only server-side consumption; RRU power remained unchanged.
Activating the BBU (Step 2) with a UE attached in idle mode increased RRU consumption to 100 W under a 2x2
MIMO configuration, and subsequently to 105 W when the MIMO configuration was changed to 4x4 (Step 3).

Adjusting the TDD profile (Step 4 & 5) from a symmetric configuration to a DL-optimised configuration
resulted in an increase to 108 W. During active user-traffic (Step 6) generation (60 seconds of TCP traffic
followed by 60 seconds of idle time), consumption peaked at 130 W. The alternation between high (130 W)
and idle (108 W) power states is clearly reflected in the measurement traces.

0 TCP sessions 120 TCP sessions 1;0 TCP sessions 1 TCP session

Figure 4-25: Dependences between user behaviour and application design on 5GS power usage.

Figure 4-25 further demonstrates the relationship between user behaviour, application-level design choices,
and RRH energy usage. Short, intensive download phases—particularly with a high number of parallel TCP
sessions—drive significantly higher consumption than idle periods. Upload traffic, in contrast, results in only
a minor increase relative to idle consumption, illustrating that uplink processing is notably less energy
demanding. Longer download durations proportionally extend the high-consumption plateau, while reducing
the number of TCP sessions significantly lowers RRU load (less user load can be generated). These insights
underscore the importance of application design and traffic pattern predictability in the context of energy-
efficient mobile-network operation.

4.2.2 Energy Use Patterns on the 5G SW

To complement the hardware-level analysis, the Scaphandre measurement tool was used to evaluate power
consumption at the software-component level, including virtualised BBU functions, the 5G Core, and traffic-
generation applications (iPerf). The same test sequence used for hardware evaluation was applied to
maintain methodological consistency.

As illustrated in Figure 4-26 software-component consumption scales directly with traffic intensity and the
associated computational load. More complex MIMO configurations led to higher BBU consumption, while
application-level tools such as iPerf exhibited consumption patterns that closely correlate with BBU
workload. These results confirm the strong coupling between RAN functions and application traffic
characteristics in cloud-native 5G/6G deployments.
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Figure 4-26: Energy Use Patterns — more complex MIMO configuration causes more power consumption (left, middle),
5G BBU component’s power consumption correlates to application power consumption.

4.2.3 Advanced Experimentation

Building upon the initial energy-consumption characterisation, a structured set of optimisation mechanisms
was experimentally validated. These mechanisms were utilised to manage RAN power usage in response to
changing operational conditions, with relevance to the 6Green use case focusing on maintaining critical
communication capabilities during energy-constraint scenarios.

The following mechanisms were evaluated: gradual cell shutdown, radio port output-power optimisation,
cell bandwidth adaptation and MIMO-level adaptation. Each mechanism provides different saving potentials
and implications for end-to-end network performance, which were analysed in detail.

Gradual Cell Shutdown

Gradual cell shutdown offers substantial energy savings by transitioning RRUs into standby mode (through
CPRI link deactivation) or by completely powering off individual RRU units. This mechanism also reduces the
corresponding BBU processing load for deactivated cells, thereby achieving significant system-wide energy
reduction. It is particularly suited for low-traffic periods or scenarios where maintaining only minimal
coverage is acceptable.

(B)5G Testbed Configuration:

- Baseline: BBU with 2 x RRU (dual-cell).
- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4x4, QAMZ256 DL/UL, TX Power: 26
dBm/port.

Test procedure:

- Cell shutdown via CPRI deactivation and RRU power-off.
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Figure 4-27: Energy Savings by Applying Gradual Cell Deactivation

In our test configuration (BBU with two RRUs operating in band n77 at 3800 MHz with 100 MHz bandwidth,
4x4 MIMO, and 26 dBm per port), deactivating one RRU reduced hardware consumption by up to 50%,
decreased BBU processing by up to 33%, and reduced 5G Core processing by up to 42%. When two cells each
served one UE, throughput reached approximately 850 Mbps per UE. When a single active cell served two
UEs, throughput decreased to roughly 643 Mbps, representing an expected reduction given the operational
constraints.

Radio Port Power Optimisation

Transmission-power optimisation revealed that maximum output power does not necessarily correspond to
maximum throughput achieved by served UEs. Across the tested RRU port power levels (33, 31, 29, 27, 25,
and 23 dBm), the highest throughput—950 Mbps—occurred at 27 dBm. This represents up to 121%
improvement compared with the maximum-power configuration (33 dBm), which achieved only 430 Mbps
due to increased signal distortion (reference UE was too close to the cell). Lowering the output power to 23
dBm produced 580 Mbps, offering reduced coverage but still acceptable performance.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 x RRU.
- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4x4, QAM256 DL/UL.

Test procedure:

- Reduce TX power from 33, 31, 29, 27, 25 to 23 dBm,
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Figure 4-28: Radio Port Power Optimisation with Corresponding Throughput Gains

The optimisation resulted in up to 21% reduction in RRU hardware power consumption and up to 48%
reduction in 5G Core processing due to lower achievable UE throughput. BBU consumption remained in the
same range, as its base processing load is not influenced by the RRU transmit-power adjustments. This
experiment illustrates a key finding: in the case when UEs are close to the cell tower, optimal operational
efficiency is achieved through moderate rather than maximum transmission power.

Radio Bandwidth Optimisation

Bandwidth adaptation on the cell proved to be the most effective mechanism for reducing software-side
energy consumption. Reducing bandwidth from 100 MHz to 20 MHz decreases the total number of resource
blocks from 273 to 106 (a 61% reduction), resulting in proportionally lower BBU processing requirements.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 x RRU.
- Cell configuration: n77, 3800 MHz, MIMO: 4x4, QAM256 DL/UL, TX Power: 25 dBm/port.

Test Procedure

- Reduce cell Bandwidth from 100, 50 to 20 MHz.
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Figure 4-29: Energy Reduction Enabled by Bandwidth Downscaling

The tests showed a minor reduction in RRU hardware consumption (approximately 4%) but a substantial
decrease in BBU and 5G Core consumption (up to 69% and 62% respectively). The throughput impact was
proportional to the allocated bandwidth: 1 Gbps at 100 MHz, approximately 500 Mbps at 50 MHz, and 230
Mbps at 20 MHz. The 20 MHz configuration remains adequate for essential services such as emergency voice,
messaging, and alert dissemination, making bandwidth optimisation particularly relevant for crisis-response
scenarios.

MIMO Level Optimisation

Adjusting the MIMO configuration offers a balanced optimisation option that delivers both reduced energy
consumption and improved radio link robustness in degraded radio environments. Lowering the MIMO level
reduces the number of active RF chains at the RRU and significantly decreases spatial-processing
requirements at the BBU.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 x RRU.
- Band:n77, 3800 MHz, BW: 100 MHz, QAM256 DL/UL, TX: 25 dBm/port.

Test Procedure

- Reduce MIMO from 4x4, 2x2 to SISO level.
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Figure 4-30: Power Efficiency Improvements via MIMO Downscaling

Measured savings included up to 16% reduction in RRU hardware consumption, up to 43% reduction in BBU
consumption, and up to 55% reduction in 5G Core power consumption. Throughput decreased from
approximately 1 Gbps (4x4 MIMO) to 670 Mbps (2x2 MIMO) and 390 Mbps (SISO). Importantly, the SISO
configuration demonstrated the highest link stability, which is crucial under non-line-of-sight and
infrastructure-degraded conditions.

4.2.4 Main findings

The validated mechanisms support context-aware optimisation strategies that can be selectively applied
depending on the operational scenario. Gradual cell shutdown enables up to 50% energy savings on the RRU
side (base station with two cells) with moderate QoE impact and is well suited for low-density base stations
or emergency-only operation. Radio transmission-power optimisation delivers up to 25% savings with
negligible—and under favourable conditions, such as UEs located near the cell site—even positive QoE
impact. Radio-bandwidth reduction provides up to 70% savings and represents the most effective software-
based mechanism, though it introduces significant capacity constraints. MIMO-level reduction yields up to
55% savings and enhances link robustness in challenging radio environments.

The following key conclusions emerged. First, the identified “throughput efficiency paradox” demonstrates
that moderate transmit-power configurations can outperform high-power operation in both throughput and
energy efficiency. Second, combining multiple mechanisms produces cumulative benefits, enabling up to 70%
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total energy reduction in extreme energy-constrained scenarios. Third, the observed deterministic power-
consumption patterns provide a strong foundation for automated Al/ML-based control.

The comprehensive measurement and validation activities conducted in this task confirm that the
investigated mechanisms can jointly deliver up to 70% system-wide energy savings, making them suitable for
highly energy-constrained contexts such as disaster-response operations. The work provides quantified
performance impacts, identifies important cross-layer efficiency interactions, and establishes a reproducible
methodological basis for Al/ML-enabled autonomous power management. As next steps, we will integrate
these findings into higher-level management frameworks, validate the mechanisms under realistic crisis
conditions as part of the use-case activities, and align them with renewable-energy systems and advanced
battery-management solutions.

The complexity and multidimensional nature of RAN energy optimisation necessitate the adoption of Al-
driven approaches. Prediction models can anticipate traffic behaviour and proactively adjust RAN
configurations. Multi-objective reinforcement-learning methods can balance competing parameters such as
coverage, QoE, and energy consumption. Context-recognition models enable the system to automatically
identify operational states, while anomaly-detection models can reveal irregular consumption patterns or
early signs of hardware degradation.

4.3 Energy-Aware Network Slice Management in O-RAN

This modular approach to service delivery achieved by network slicing is complemented by the disaggregation of
the Radio Access Networks (RAN) architecture as e.g., suggested by the Open RAN (O-RAN) Alliance” in order to
enable RAN openness and interoperability. This architecture divides the RAN into three key components: the
Central Unit (CU), the Distributed Unit (DU), and the Radio Unit (RU), which can be deployed on open hardware
and cloud nodes as VNFs. Network slicing in O-RAN, is intricately linked to the placement of RAN-specific Network
Functions (NFs) in the RU, DU, and CU. By deploying DUs closer to RUs at the network edge, operators can reduce
latency and improve the overall performance of RAN slices. However, in this regard, network slicing in O-RAN is
mapped into a complex RU, DU, and CU resource allocation problem. Challenges arise in the dynamic allocation
of these resources to support varying slice requirements and changing slice request patterns, while minimizing
power consumption and reconfiguration costs associated with VNF migration towards improving slice admittance
ratio [20]. Generally, VNF allocation is performed either proactively but assuming perfect forecasts of future slice
admission requests for a quite long time horizon (e.g., [21]), or reactively upon arrival of the slice requests with
future knowledge on traffic arrivals in an expected sense (e.g., [22], [23]). The above challenges underscore the
need for innovative solutions to optimize resource utilization, minimize network delay and power consumption
but also importantly enhance the robustness of O-RAN slicing deployments under uncertainties on future
knowledge. This section presents our work that contributes towards this direction by solving the problem of
optimal joint slice admission control and VNFs placement in the O-RAN modules with an iterative Model Predictive
Control (MPC) strategy that allows considering updated forecasts of future slice arrivals. Also, it aims to shed light
on the issue of minimizing the reconfiguration costs associated with optimizing multiple slice deployments, which
are related to slice downtime (decreased slice availability), offering insights into strategies to streamline this
process and ensure maximization of revenue during slice admission. We appropriately handle reconfiguration
along the MPC iterations to improve slice admittance in an energy efficient way. Additionally, the proposed setting
considers vendors' Quality of Service (QoS) issues such as end-to-end delays, but also, an overall green operation
through accounting for power consumption costs.

17 https://www.o-ran.org
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4.3.1 System Architecture and Modeling

Figure 4-31 depicts the deployed O-RAN based architecture. In detail, micro-datacenters, namely Edge Clouds
(ECs), are deployed at the network edge and serve as computing resources, in the proximity of the radio unit
enabling low-latency processing and reducing backhaul traffic Edenote the set of ECs of the topology. Each
EC, e € &, hosts a DU responsible for processing and managing network functions associated with specific
network slices. The ECs are connected with the cell-cite, where an RU is deployed, via fronthaul (FH)
connections, while midhaul (MH) links connect each EC with the Regional Cloud (RC) datacenter, denoted by
R, where the CU is deployed. The RC serves as a centralized computing resource for higher-level processing
and coordination across multiple ECs. The FH links facilitate low-latency communication between the RU and
the DUs, while MH links provide high-bandwidth connectivity between DUs and CU. For every e € £ the total
computing capacity, in CPU cores is defined as CE,, while the corresponding parameter for the regional cloud
is denoted by CR. Furthermore, transmission delay of the FH and the MH links is defined as 6, and
Oe %, Ve € €, where 1 is the RU. Moreover, CBg ¢, CBy ¢ stand for the bandwidth of the FH and MH links
associated with the EC, e € &, respectively.

4.3.2 Slice Request Model

In the proposed O-RAN-based system modeling, we consider a set F consisting of available VNFs, denoted by
v¢ € F that can be deployed to compose various network slices. It is important to note that certain VNFs,
specifically the VNFs with IDs v, v{, remain consistent across all network slice requests. In precise, VNFs
Vg, vy are the initial VNFs used in every request s. When a network slice request s arrives, it is considered as
an ordered set of elements of F, Fg = {v§, v}, ..., V§, w0,V } € F, where vg = vy € F, v = v; € F. Notably,
each network slice request s is structured following the Service Function Chain (SFC) deployment model,
where a specific execution sequence is defined [1]. This sequence dictates the order in which the VNFs are
processed within the network slice.

UK}— - RU

O
c
I
I
I
I
I
I
I
Core Network

Figure 4-31: Proposed O-RAN-based Architecture.

Additionally, the compute and network related resource requirements are defined per slice s. For a VNF v; €
Fs, there exist specific demands regarding CPU cores for the VNF deployment cg ¢ and the bandwidth for the
link (f — 1,f) denoted as bg ¢. Furthermore, each request s arrives at a specific time t5 and has a holding time
htg, indicating the duration for which the slice remains active once requested. Moreover, an end-to-end delay
requirement Dy, s and a priority value pry is defined for each slice request, reflecting its tolerance level for
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delay and importance, respectively. All notations used are summarized in Table 4. Let us also specify the
following variables that play an important role in the problem formulation:

. 1, feF,isplacedon ECe€ £ att,
:r:_,;‘_f(t) =

0, otherwise.

1, f € F, is placed on RC at t,
ys.f(t) -

0, otherwise.

X(t), ts <t < (ts+ hty),

srelt) =
a0 0, otherwise.

Furthermore, we consider that each EC hosts a single distributed computing unit. The VNF with index 0 is
placed on the RU, and the remaining VNFs are placed either on an EC or the RC with the constraint that if a
VNF is placed on an EC all its preceding VNFs in the path should be placed on ECs.
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Table 4: Selective Notation and Description.

Notation Description
H Time horizon of the MPC
£ Set of ECs
EC Edge Cloud
RC Regional Cloud
RU Radio Unit
F A set of available VINFs
F A subset of VNFs consisting a service chain for
# slice s
fekF; Index of a VNF in the service chain of slice s
_I VINFs associated with slice s except the VINF with
Fs index [
g MNumber of VNFs of slice =
te Arrmival tme of shce s
htg Holding time of slice s
Prs Priority value of slice s
B Set of newly ammved, waiting and already active
(t) lices at ti
slices at tme ¢
Hfired{t]l set of alrcad_y ad:_nilu:d xl_i::ux that are stll active
at the MPC-iteration starting at ¢
set of existing active slices and slice requests that
R[E] have amived but not yet admitted with positive
updated holding time
Ca, f CPU requirement of VNF f of slice s
b Bandwidth requirements for two successive VNFs
8.f f—1, f of slice =
Doz s End-to-end delay requirement of slice s
X.o(t) 1 if shice s has been admitted at time ¢ or earlier
otherwise 0
:z:g_f{t}, Vs, flt) Binaries indicating the placement of VNFs
sTalt) Binary indicating if a slice is active
Celt) CPU utilization on cloud e € £
Bandwidth utilization between the RU and the EC
Be(t)
e €&
CE Total possible computing capacity of EC e for
T every time f
R Total possible computing capacity of the RC
CBp. (CBye) Total bandwidth of FH (MH) link related to e
Ee_R Cost for moving a VNF from an EC to the RC
EE-E Cost for moving a WNF between ECs
u.(t) 1 if the fronthaul link connected to EC e is utilized
ve(t) 1 if the midhaul link connected to EC e is utilized
fre. dom Delay parameters
prmax Maximum power consumption of an EC
_ Proportion of the consumed power of an idle
7 server with respect to Ppgq
F i Maximum power consumption of network links
pliz Fixed power consumption of a network link be-
net,e tween RU and e € £
XX:_f[t}, XYr ,,f+1{t]|‘ Auxiliary variables for the linearization of the
XY;__'rl[t]l, }'X:J'({] problem formulation

101096925 - 6Green — HORIZON-JU-SNS-2022

92 of 158



D2.3 — The 6Green Enabling Technologies GGreen

4.3.3 Problem Formulation
System Dynamics and Constraints
The CPU utilization of each EC evolves as follows:
Ce(t+A7) =Ce(t)+ > D (@l (t+A7)—al g(t))es s
sER(t+AT) fEF,

as obtained after the calculations provided analytically in [24]. In similar lines, we compute the evolution
equation of the bandwidth utilization of the FH links as:
Bo(t+A7)=B.(t)+ > (2fa(t+A7) =zl ())be .
sER(t4+AT)

Next, we shorty describe and provide the remaining system constraints:

First, the aggregate of the computing resources to bind in any EC or the RC has to be lower than the total
possible computing capacity of the corresponding cloud, which is expressed as follows:

> Yz (t)esy < CEe, Ye€,

sER(t) FEF,

> Y wyestesy < CR

seR(t) feFs

A slice uses a link between the RU and an EC, if its second VNF (i.e., with index 1) is placed in this EC. The
bandwidth constraints for the FH and MH links are expressed for every time t as follows.

> af ()b < CBre, Ve €E,

seR(t)

Z Z T f()ys p41(E)bs, g1 < CBpre, Ve €E.

HC.H.(E] ICJ’": g

For every admitted slice, its first VNF (i.e., with index 0) is placed in the RU:

> ale(t) =0, Vs € R(t),

Yeef

ys.0(t) =0, Vs € R(t).
In addition, a VNF f, of an admitted slice s, can be allocated either to a single EC or the RC at every time i.e.,

S "% 5 (8) + yes (£) = sra(t), Vs € R(t),Vf € F;°.
ecE

Moreover, for an admitted slice, the VNF 1 should be placed in an EC, which is guaranteed if it cannot be
placed in the RC, i.e.,

y.1(t) =0, Vs € R(t).

Under the assumptions of service chaining and colocation, if for an admitted slice s, a VNF fis placed in an
EC, the VNFs preceding fin the service chain should be also placed in the same EC. Similarly, if a VNF is placed
in the RC, its successive VNFs in the service chain of the slice should be also placed in the RC.
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Therefore,

T8 ((t) < a5,y (t), Vf € F, %' Vs € R(t),Ve € €,
Ys.r(t) < ysp41(t), Vf € ", Vs € R(1).

The total delay imposed by FH and MH links at any time is bounded as follows:

S owia®)dret+ Y D xl (s p1(t)de r

ecE fEF s ecE
S Dmax.s-_ Ys e .R{f)

A FH link is considered utilized only if one or more slices have placed their VNFs with index 1 in its
corresponding EC, i.e.:

uc(t) > x5, (t), Vs € R(t),Vec £,
ue(t) € {0.1}, Ye € £,

A MH link is considered utilized if for any pair of two successive VNFs of any slice, one is placed in the EC and
the other on the RC, i.e.,

ve(t) = x5 f(t)ys. p41(t), Vs € R(t),Vf € F ™ Ve € £,
ve(t) € {0,1}, Ve € £.

Finally, a slice that gets admitted at time should be considered admitted for its entire control lifecycle, i.e.,
X.(t+ A7) = X.(t), Vs € R(2).
Objective Function

To define the objective function we consider three factors, namely: (i) the revenue obtained from slice
acceptance, (ii) the cost deriving from reallocating already accepted slices, and (iii) the power consumption
of the ECs and the network links that are utilized for the slice deployment. The revenue of a slice acceptance
attime tis

ReV(t) = Z srs(t) - prs.

seR(t)

For the reallocation cost both VNFs moving from an EC to the RC or vice versa and those VNFs that move
from an EC to another are considered. The instantaneous reallocation cost of VNFs from an EC to the RC or
vice versa is expressed as:

ReCF-T(1) =

(25 ;s g (t+ AT) + ya s (D)2 (t + AT))EER,
sER(t), fEF, ecE

while the reallocation cost from an EC to a different EC is expressed by

ReC® " (t) = 3 s (0)Th f(t+ AT)EEE.

sER(t), fEF, eeE icE—"

Regarding the power consumption cost, we follow the modelling of a power efficient VNF placement
approach from the literature [25]. In case of ECs, it is given by:

e EC _ | pnaz — m o
PCEC (1) —g (?z(.-(t)nf FA=NEE )
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In case of links that connect the RU with an EC, it is formulated as:

e . Be(t) .
+RU - E fix T
‘P(’ (fJ = Z (u‘!(t}f’;n:f.:: + (;B;-'_“ -'”m’:f ) .

e f

Finally, in case of links that connect an EC with the RC, it can be written as:
J,CE R{.t) = Z ?‘[(f)j;:{::‘
EE

Optimization Problem - Problem 1:

max Z (Hffl--’(f}—.f{a('E Biyy — ReCE-E(1)
t=0:AT 4 (H=1)AT

— PCEC(t) — PC"U-E(t) — pCF “(r}) AT

subject to:
all system dynamics and constraints expressed above

and
X.(t) € {0,1}, 2 ((t), 4. £(2) € {0,1},
Vs € R(t),Vf e F,Vee &Vt € {6, + Ar., £ + (H — 1)Ar},

where C.(1), B.(1), Ve € € are given. The optimization problem is mixed integer quadratically constrained
problem with quadratic objective. Next, we apply Watters' linearization [26] on the quadratic terms in both
the objective function and the constraints and the problem takes a MILP form.

4.3.4 Proposed Solution via Model Predictive Control (MPC)

To perform dynamic optimal slice admission and resource allocation on admitted slices, we solve the Problem 1
in a Model Predictive Control (MPC) fashion as illustrated in Figure 4-32. The control period starts at t, where no
slices have arrived yet and thus no computing and bandwidth resources have been yet allocated. Problem 1 is
then solved with initial time t, and a horizon of H time intervals in the future each of duration At. The number of
slices and their arrival times within the future time horizon H is unknown and forecasts are used. In this work,
forecasts are considered given by an external forecasting tool. The decisions about slice admittance and resource
allocation are obtained for all time intervals within the horizon H. However, we apply only the decisions for time
to and disregard all other decisions for future times. By the time we apply the decisions we also observe which
slices actually arrived. For slices that were forecasted to arrive but did not, we cancel any related resource
allocation decision. For slices that arrived without being expected, we also do not allocate resources as otherwise
infeasibilities and high costs may emerge. At the next decision time, i.e., ty + A, the process is repeated. In
particular, we observe the updated states regarding the computing resources of the ECs and the RC as well as the
bandwidth of the links. Also, updated forecasts of the number and arrival times of new slices are obtained for a
time horizon equal again to H time intervals in the future each of duration At. However, slices that have been
already accepted at time tg or earlier, should continue providing service at time l =ty + A, if their updated
holding time is positive. This requirement cannot be directly handled by Problem 1 and necessitates the additional
constraint Xs(£) = 1,¥s € R"*“U((), with RFi*ed(]) the set including all slices satisfying s € R(1 — At) and ht >
At and X4 (I — At) = 1. In addition, the Problem 1 should be adapted in order to account for the potential re-
allocation costs of slices between times two consecutive decision times. To do so we introduce new binary
parameters X;’fFiXEd,ysF_ifxed, for all slices s € RF*€d(]) with values set as X;’fFixed = xg¢(1— AD), ygifxed =
ys£(1 — AT). Based on the above, we formulate Problem 2 that is an adapted version of Problem 1 for being
integrated in an MPC framework. Algorithm 1 presents a pseudo-code of the solution process.
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Figure 4-32: MPC Iterations.

Optimization Problem to be integrated in an MPC Framework — Problem 2:
max 3 (ReV(tJ — ReCE~R(t) — ReCEE(t)
t=L: AT+ (H-1)AT
~ PCHC(t) - PCRU=E(t) - PCE‘R(t}) LAt
— RECE-RImtpy 1, , — RECE-EImitpy 1,
subject to:

all network dynamics and constraints above

Xﬂ{t} € {ﬂ: l}r m:.f{t}:ys._f(t} € {“.- 1}1
Ws € R(t),¥f € Fs,Vee E Wt € {€,{ + Ar.. L+ (H — 1)AT},

if £ > tp include Xs(£) =1,¥s € R7=(0),

where:

Y A
>t = 0, otherwise,

RBCE-R,Init{E) —
> (257 ™My 5 (6) + ye "2t (£)) - r - AT,

seRFized(g) fe

RecE—E._Jrn't(E) —

PDEND DD D v SORE

sERFized(y) fe€f jeg—=
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Algorithm 1 Model Predictive Control for Dynamic Resource
Allocation on Network Slices

Input: Time horizon H; Initial time #q; All parameters related
to the RU, EC, RC, including power consumption, band-
width, computing availability, re-allocation cost parameters;

procedure MPC

Initializations:
{ tos Ce('ﬁ.[)) «— 0; BE(T,[)) +— 0, Ve € £;
while not the end of control period do

1. Observe the state variables, C. (). B.(f), e € £.

2. If ¢ > ty, observe already active slices with
positive updated holding time, ht, + ht, — A7, forming
the set RF*ed({). Also, compute the binary parameters
m::?uﬁd,yf}“d, for all slices s € RF™=ed(¢).

3. Receive updated forecasts of arriving slices for a
horizon H, i.e., for times {{,{ + A7,....{ + (H — 1)A7};

4. Solve Problem 2 and obtain the main optimization
variables, i.e., X.(¢), 2% ((£), ys ¢(£) for all s € R(£), all
related VNFs f and all times {¢,{+ A7, ..., +(H —1)A7};

5. Observe the realizations of the uncertain quantities
at the current decision interval £, i.e., R({:');

6. Keep the decisions only for time /, i.e., X.(f),
x5 £(£), ys,£(£) for all s € R(f) (and related VNFs) and
discard those of all future time slots, ie., {£{ + A7, ..., ¢ +
(H — 1)Ar}. If a slice s was forecasted to arrive but in
reality did not or the vice versa set X () = x5 (({) =
ys.f () =0,Ve € &, f € Fi.

7. Update the state variables C.(¢), B.(f) for the
next decision interval (¢ + A7) using the equations of
Section IV-B for slices in R().

8.0+ 1+ AT

end while
end procedure

4.3.5 Evaluation Results (MPC)

Evaluation Setting:

This section presents the assessment of the proposed MPC-based solution approach for the problem 1. For
the implementation of the simulation environment, version 3.10 of Python programming language is used.
We follow an object-oriented programming approach, defining one class for the slice request model and one
class for implementing the solution methods, i.e., the proposed mpc-based method and the alternative
solutions. The substrate network parameters are involved in the solution class. To solve the optimization
problem we use Gurobi solver, specifically, the gurobipy Python package. The parameter values are given in
Table 5 and 4. The substrate network consists of three ECs and one RC. We consider two types of slices,
URLLC and eMBB. VNF requirements adhere to a typical paradigm commonly for cloud service providers.
These requirements manifest in three distinct flavors, denoted as small, medium, and large. Each flavor
corresponds to varying levels of resource demands, particularly in terms of CPU cores for our modeling.
Specifically, the CPU demand per flavor is specified as 2 cores for small, 4 for medium, and 8 for large. In the
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context of the simulation process, a flavor is chosen equiprobably for each VNF of every slice. We consider
that the number of slice requests is equal to 15 over a time horizon of 12 time units. In order to perform a
fair evaluation between the distinct approaches, we assume that the holding time of every deployed slice
could not exceed the 12 timesteps setup which reflect to 24 hours of deployment time.

Table 5: Network parameters.

| Parameter | Value |
Number of ECs 3
EC, RC capacity 16, 64 cores

FH link capacity, delay 2Gbps, 4ms
MH link capacity, delay | 4Gbps, 8ms

~ 0.8

pmaz 2000W
Pret” 200 W
plix 160 W

el

Table 6: Slice parameters.

. Slice type
Attributes URLLC B
Do s 25 ms 50 ms
Co.f € {2.4,8} € {2,4,8}
bs, s 100 Mbps 200 Mbps
Request arrival times £ {1,12} U{1,12}
Holding time ht min(i{3,6},(s) | min(U{3,6},s)
Number of requests 556% of total 45% of total
Normalized priority 3 per time-slot 2.4 per time-slot

We generate forecasts for the time arrival of requests using the following forecasting method. Initially, the
arrival time of requests is sampled from a discrete uniform distribution over the optimization horizon, H. At
each time slot of the control period, we solve the Problem 2 and obtain the decision variables. We consider
that our forecasting method generates forecasts that are inaccurate with probability 10%. In this context, we
define two forecasting scenarios, namely, (i) Less accurate forecasting scenario: In this scenario, the arrival
time of not yet realized slice requests is resampled from a discrete uniform distribution over the horizon.
(ii)Highly accurate forecasting scenario: Under the highly accurate forecasting scenario, 20% of the expected
requests to arrive resample their time arrival. All the simulations are executed in an Ubuntu 20.04 virtual
machine with 8 vcpus and 8GB of RAM of an Intel(R) Xeon(R) CPU@2.10GHz server.

Evaluation Metrics:

The evaluation focuses on comparing the performance of three distinct methods: the proposed MPC solution,
an MPC variant that avoids VNF reallocation (MPC-NR), and a one-shot optimization approach that decides
the admission of slice requests at the first time slot for the entire horizon (One Shot). These methods were
tested under the two different settings of slice request forecasting that were discussed above, in order to
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assess their robustness and adaptability to dynamic changing of slice request demands. The evaluation
metrics for the performance assessment are:

Acceptance Ratio: The acceptance ratio measures the percentage of admitted slices by a certain time step,
determined by the active slice subset, which includes ongoing requests yet to expire. It reflects the system's
efficacy in handling incoming slice demands amidst existing deployment commitments.

Objective Value: This metric represents the optimization objective value achieved by each method based on
the actual realization of slice requests, offering insights into their efficiency in resource allocation and
utilization during the slice requests admission.

Power Efficiency: This is defined as the ratio of revenue generated by the admitted slices over the total
power consumption of the compute and network counterparts of the substrate network. The inverse of
power efficiency signifies the system's effectiveness in conserving energy, with lower values denoting
higher power efficiency.

Discussion on the Results:

Figure 4-33 and Figure 4-34 present the cumulative average of the above evaluation metrics computed over
a 12-time step horizon for the two cases of the forecasting scenarios, aiming to provide a comprehensive
overview of the performance trends observed across the simulation. In scenarios with favorable forecast
conditions, marginal differences are observed between the solution methods. However, upon closer
examination, MPC demonstrates its adaptability over the prediction horizon, particularly in achieving higher
acceptance ratios, as shown in Figure 4-33a. At the same time, it maintains optimal values for other key
metrics compared to MPC-NR and One Shot solutions (Figure 4-33b,c), showcasing its ability to adjust
resource allocation decisions regarding VNF placement, while achieving to maintain low consumption power
of the compute and network counterparts.

The efficacy of the MPC approach becomes more evident in less accurate forecast scenarios. The
evaluation results regarding this scenario are shown in Figure 4-34. In more detail, despite inherent
uncertainties, MPC consistently outperforms One Shot optimization method, highlighting its robustness
and resilience to forecast inaccuracies. Moreover, compared to the MPC solution that totally eliminates
the reallocation of VNFs, namely the MPC-NR, the proposed MPC approach maintains a substantial
performance advantage across all evaluated metrics. More precisely, the optimal resource utilization is
highlighted in Figure 4-34a, where the cumulative average of acceptance ratio is much higher than the
other approaches from very early during the evaluation period and maintained for the whole horizon, as
reflected in Figure 4-34b. It is worth mentioning, that despite the higher acceptance ratio, which entails to
increased resource demand, the proposed MPC approach still outperforms the MPC-NR and One Shot
methods in terms of power efficiency (Figure 4-34c).

The observed performance disparities underscore the significance of proactive and adaptive resource
allocation strategies in dynamic network environments. While traditional optimization methods may suffice
under ideal conditions, the inherent uncertainty of real-world scenarios necessitates more sophisticated
approaches. The MPC ability to leverage forecast information to anticipate demand fluctuations and
proactively optimize resource allocation decisions is a key determinant of its efficacy on slice admission in O-
RAN-based architectures. Furthermore, the performance advantage of the MPC-based approach over MPC-
NR reveals the importance of considering reallocation in dynamic resource allocation strategies. By factoring
in these costs, the MPC framework effectively manages the trade-offs between resource usage optimization
and the operational overhead associated with reallocating and migrating VNFs. This ensures optimal resource
utilization while ensuring higher slice availability with minimal management complexities from the
infrastructure provider's perspective.
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Figure 4-33: Comparative evaluation results under highly accurate forecasting scenarios.
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Figure 4-34: Comparative evaluation results under less accurate forecasting scenarios.

In future work, we are going to try adopting the abovementioned formulation in core network and serverless
scenarios. Especially, for serverless computing paradigm, we will try to develop a two-level virtualization
mechanism that provides a virtual network to an application (referred to as the related slice) and manages
the serverless application deployment within the virtual network. By integrating the abovementioned
forecasting mechanism with a workload estimator related to the application, we can work on creating a
scaling approach for VNF replicas and virtual network resources.

4.3.6 Proposed Solution using Reinforcement Learning (RL)

In this section, we consider a simpler version of the optimization problem for joint admission control and
resource allocation of network slices in the proposed O-RAN architecture, where the reconfiguration of the
already admitted slices is being deactivated, by forbidding the reallocation of deployed VNFs.

A Markov Decision Process (MDP) is a typical framework to describe decision-making problems in a stochastic
environment. An MDP consists of the set of states ,S, the set of actions 4, a state transition function P,

which indicates the probability P(s’ | s, a) of obtaining the state s’ when taking action a from the state
s, the reward functionr: S X A — R and the discount factor y. Specifically, the policym: S XA - [0,1]
indicates the probability of choosing the action a € A from state s € S. The agent’s objective is to learn an

. . . . - © Ik .

optimal policy ', which maximizes the expected return E[Z{kzo 4 rk], where 17, is the reward that the
agent receives after the k'™ RL decision step.

In our setting, slice requests arrive at the agent and the agent decides whether to accept each one of them
in order of their arrival times. Slice requests may arrive at the same time slot at the agent where in this case
ties break arbitrarily. To avoid confusion, the indicator k denotes the RL-based decision step for accepting
or not a slice corresponding to a request, whereas t;, denotes the time slot of the control window where the
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RL decision k takes place. Multiple RL decision steps k, k + 1, ..., m may refer to the same time slot t;, =
ty+1= .. = tp in the control window when concurrent slice request arrivals take place. For two RL
decision steps k and m with k < m it should hold that t, <t,, . Furthermore, slices that were not
accepted are given as input to the agent at the next time slot if their holding time has not expired. In this
case, they are considered as new slice requests with properly decreased holding times.

State: The state of the agent at the RL-decision step k is the tuple (ACy, ABy, ATy, SI, ty), where AC;, =

[ACl(k), ey ACg (k), ARC(k)] , collecting the available capacity of all ECs and of the RC; AB, =
[ABFH'l(k), ey ABpy 1g/(k), AByy1(k), ..., ABMH,|8|(k)] denotes the available bandwidth capacity of FH
and MH links; AT, = [ATEC,l(k), wer ATgc ) (k), ATyp 1 (K), ..., ATMH,|S|(k)] collects the remaining
times that each EC or each MH link will remain active according to the configuration at step k, t, is the
current time slot of the control horizon and SI;, contains necessary information regarding the slice about to
be processed. In particular, SI;, = (prs, Diax,s» hts, €51y «) Csng by vy b ns) assuming that slice s is
examined at step k .

Action: The agent jointly decides which EC will serve the input slice as well as the number of VNFs of the slice
placed at the chosen EC. Specifically, the agent has to decide the ID, e € {1, ..., |€| }, of EC and the number
of VNFs,n € {1, ..., ng}, of the ordered service chain of the slice that will be placed at the chosen EC, i.e.,
the decision can be described as the pair (e, n). For ensuring training efficiency, we map the above pair to
the one-dimensional space by the function f(e, n) = (e — 1) - ng + n. Therefore, a slice s with arrival
time t; and holding time htg is given to the agent at time t;, = t; (it may hold that t, > t only if the slice
has been rejected at t,. Then, the agent takes the decision a;, # 0 from which we obtain (e, vy) by the
inverse mapping of f (e, n). The action a;, encodes rejection of the input slice. Next, the decision variables
fort € {ty, ..., tx + htg — 1} are set as follows:

xse,’}(t) <1, Vfe{l . v}
Vsf() « 1L, VFE {vp+1,..,ng}, if v +1 <,
X(t) « 1.

In case of rejection, the slice is not placed, X;(t;) < 0 and its holding time is decreased by 1, i.e., hty «
ht, — 1.If the new holding time is equal to zero, the slice is rejected, alternatively, the slice will be given as
input to the agent at the next time slot of the control horizon, £}, 4.

Reward

The reward function is defined as the impact of the action to the objective function of the abovedefined
optimization problem. In particular, if the action is rejection the reward is set equal to 0. Otherwise, for an
action ay, that is mapped to (e, v;), applied to slice s, when the agent is in state sy, the reward is given by:

R( ) = {Revs — PC,, if slice s is accepted at step k,
Sk Qi) = 0, if slice s is rejected at step k,

where PC; = PCEC¢ + PCRU~E + PCE~R, and:

e Rel, = pry - ht,, is the total revenue obtained by the acceptance of slice,
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e PCECis the power consumption on the chosen EC:

Sk, e
PCEC = max{ht, — ATy, (), 0}y P + (1 — y) ==L pmazpy,

ek
where ATk e, is obtained from the current state s.
e PCERisthe power consumption on FH link:

PCRU=E = max{ht, — ATy, (k),0}PL>, + b;,1 pmaxpt

e PCERis the power consumption on the MH link:

bsy
PCE -R _ l{vk+1<n ) max{ht — ATy ek (k), 0} P{el;ce CBI];+1 Prr{é?xhts],

where 1¢, 11<p 3 = 1if v + 1 < ngand 0 otherwise.

Environment - Transition Function

The transitions are defined per RL decision step for each slice request and not per time slot, i.e., more than
one updates are possible in a single time slot of the control horizon depending on the number of slices that
have arrived in the corresponding slot. Thus, to clearly explain the dynamics, we define the auxiliary set of
accepted slices R4 (k). This set is initialized as empty, i.e., R4(0) < @ and whenever the agent takes an action
a, # 0 for a slice s® the set is updated via R4(k + 1) « R, (k) U {s(®)}, otherwise Ry(k + 1) = R, (k).
Firstly, the slice information is updated with the information of the next slice in the queue, which is
considered a stochastic transition. Regarding the network state, the computing and bandwidth capacities are
updated via the equations AC, (k) = CEyx — C¥(tx), ABpy e(k) = CBre — BEy o (ti), AByp (k) = CBy g,
where CX (), B,’;‘H‘e(tk), and B,’\‘,,H'e (tx) can be computed via the corresponding equations defined in the
Problem Formulation section, by using the set R, (k), instead of R(ty), to reflect the temporary, in-time-slot,
configuration Moreover, the active time can be calculated by the equations ATgce(k) =

Z‘L’ tk ER (k {xs 1¢(7)} and ATMHe(k) Z‘r tk geR (k){xs 1¢(7) - }’sns(T)}

Safety - Constraints Handling

All the applied decisions should respect the hard constraints of our problem. We ensure constraint
satisfaction by applying action masking to violating actions [4]. Action masking is chosen as it is suitable for
discrete action spaces and in the problem at hand, we can deterministically determine if an action violates a
constraint.

RL-based Solution

We solve the previous MDP with the PPO algorithm. PPO is an on-policy, model-free RL algorithm and was
chosen because it is aligned with the discrete action space like in our problem, requires limited
hyperparameter tuning and it is compatible with the action masking mechanism.

4.3.7 Evaluation Results (RL)

Evaluation setting:
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For the implementation of the simulation environment, we use Python version 3.10. The RL-based decision
making is based on the open-source implementation of the PPO algorithm with action masking in the Python
library StableBaselines3. The environment is modeled with the Gymnasium framework. Finally, the Gurobi
solver and particularly, the gurobipy Python package is employed to solve offline the optimization problem
for comparisons. In Table 7, we present the network infrastructure and slices parameters used for the
simulations. Two types of slices are considered in our evaluations, namely, URLLC and eMBB.

Table 7. Simulation Parameters.

Parameter Value
Number of ECs 3

EC, RC capacity 64,256 cores
Fronthaul link capacity, delay 2Gbps, 4ms
Midhaul link capacity, delay 4Gbps, 8ms

¥ 0.8

prmar - pmer 200 W
Pl 160 W
Number of Requests U{15,20}
SFC request length 8 VNFs

CPU cores demand per VNF € {2,4,8}
Request holding time min(U{3,6},12 — t,)
URLLC and eMBB bandwidth requirement 100, 200 Mbps
URLLC and eMBB delay requirement 25, 50 ms
URLLC and eMBB normalized priority 3, 2.4 per time-slot
Optimization Horizon H 12 time steps

For the comparative results, two distinct baseline methods are employed. The first is the “Oracle” method,
in which the above-defined optimization problem is solved under the unrealistic assumption that the future
slice requests are known on beforehand and provides the optimal solution of the problem. The second
baseline denoted by “RL-ST” is an RL agent similar to the one developed in the work of [6]. Contrary to our
proposed RL-agent, it does not optimize slice splitting, but, instead, considers a static splitting rule chosen
via experimentation. In particular, (i) URLLC slices are always split at their middle VNF and (ii) for the eMBB
slices, only their second VNF is placed at an EC/DU.

Evaluation metrics:

The evaluation metrics for the performance assessment are:
1. Acceptance ratio
2. Power Efficiency
3. Objective Value

We have already defined acceptance ratio and power efficiency. Following we define the objective value
metric.

Objective Value: It represents the total gain achieved by the agent at every step. It is defined as the revenue
obtained from the actual slice request realization, reduced by the power consumption incurred in the
resulting network state. This metric reflects the trade-off between minimizing power consumption and
maximizing overall revenue, either by increasing the acceptance ratio or by prioritizing slice requests with
higher priority.

It is worth mentioning that normalization of objective metrics is performed prior to simulations to mitigate
disparities arising from the diverse scales of objective-related values. Two set of experiments are conducted
to analyze, evaluate and compare the proposed method, which are detailed in the following subsections.
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Discussion on the Results:

In the first set of experiments, we create 3 datasets with varying arrival rates per time slot in the control
horizon.
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(a) Average number of arrivals. (b) Average number of active slices.
Figure 4-35: Dataset information.

Specifically, arrival patterns are generated according to three distinct distributions, as visualized in Figure
4-35a: Normal distribution, N(g— 1,0.9), an Exponential distribution, Exp(%), and a Beta distribution,

Beta(H — 2, %), rescaled to the horizon interval and grouped by time slot. The number of requests per

scenario is chosen uniformly from the set {15,186, ..., 20}. For each distribution, 1, 000 scenarios are used for
the training dataset and 10 for the test set. This experiment targets to evaluate the agent’s learning ability
by testing its behavior on diverse slice arrival distributions.

To begin with, we study the convergence of the training by performing 5 training instances, with different
seeds, on the Dataset 1 (Figure 4-35). The moving average of the cumulative reward per episode is plotted in
Figure 4-36, where we observe that after around 10, 000 episodes convergence is achieved. Similar behavior
is obtained for the other datasets.

Furthermore, we train 3 models on each dataset of Figure 49. Their achieved average objective value as well
as the objective value of the “Oracle” baseline method are plotted in Figure 4-37. In particular, Agent 1
represents the average of the models trained on Dataset 1, Agent 2 on Dataset 2, and Agent 3 on Dataset 3.
In Figure 4-37(a), which corresponds to a test set sampled by the distribution of Dataset 1, we observe that
Agent 1, which is trained on a similar dataset, performs slightly better than the other agents. In the same
sense, Agent 2 performs slightly better than the other agents on a test set sampled by the distribution used
for its training as depicted in Figure 4-37(b) and respectively, Agent 3 is the best performing agent for the
test set corresponding to the distribution used for its training in Figure 4-37(c).
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Figure 4-36: Cumulative reward evolution during training.
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Figure 4-37: Comparative evaluation under varying arrival patterns.

It is worth mentioning that the best performing agent for all datasets achieves an objective value close to the
optimal given by the oracle. Specifically, the best performing agent achieves at least 92.5% of the optimal
value. Furthermore, all agents perform well in all datasets, even on those that deviate from what they have
been trained on, which indicates the good generalization possibilities of our method.

The second set of experiments is designed to assess the agent’s ability to take the optimal splitting decision.
To this end, the agent is compared against the “RL-ST” method, in two test scenarios with varying total
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number of requests. This comparison evaluates the adaptability and state-awareness of the proposed RL
method. In the second experiment, we train 3 models based on our method and 3 models according to the
“RL-ST” baseline to assess the importance of the dynamic splitting of slices. The Dataset 2 was used for each
training instance. We create two test sets: the low load set, which corresponds to the distribution of Dataset
2, and the high load set, which follows the arrival patterns of Dataset 2, but the total number of slices is
sampled from a discrete uniform distribution over the set {20, 21, ..., 30}.
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Figure 4-38: Low load conditions.

In Figure 4-38(a), we can observe that the static splitting method leads to a high number of rejections, in
contrast to our method that has the ability to adjust the load between ECs and RC to achieve higher
acceptance ratio. The Figure 4-38(b), (c) show that the lack of adaptability of the “RL-ST” method leads to
deteriorated performance in the remaining key metrics as well. Specifically, our method shows performance
gains due to dynamic splitting on average 8.14% and at maximum 16.34% with respect to the objective value
metric, and on average 12.06% and at maximum 39.02% with respect to the power efficiency metric.
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Figure 4-39: High load conditions.
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Figure 4-40: Slice splitting statistics.

The advantages of our method over the “RL-ST” method are more evident in the case of higher demand. In
Figure 4-39(b), we observe that the objective value achieved by the “RL-ST” method is significantly lower
than our agent, whereas our method outperforms the static splitting method also with respect to the other
two assessed metrics (Figure 4-39(a), (c)). In particular, the objective value achieved by our method is on
average 12.81% higher, and the average power efficiency improvement is 4.67%. In addition, the maximum
observed improvement on this test dataset is 34.70% concerning the objective value and 20.86% for the
power efficiency metric. In Figure 4-40, the statistics related to splitting are presented. Specifically, the
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frequency of each splitting decision across all scenarios of the second set of simulations is plotted. We
observe that the agent tends to place only a single VNF at the EC for most slices, however, in many cases it
places more than one, even the entire slice, to achieve better performance.

4.4Application Graph Deployment across Multiple Providers
4.4.1 Theoretical Foundation

In this subsection, we outline the theoretical foundations of the mechanisms developed within the
Experiential Network Intelligence Function (ENIF), designed as a component for intent lifecycle management,
presented analytically in [27]. These mechanisms are detailed in D3.4, where ENIF processes slice intents
expressed as application graphs provided by the Business Support System Function (BSSF). In particular, we
present the Application Graph Partitioning mechanism and the Inter-Provider Deployment Plan
mechanism, both forming part of ENIF’s Intent Provision functionality. Finally, we showcase the results of the
experimental evaluation of the intent lifecycle management framework across multiple providers leveraging
the simulation kit, as described in D2.4.

Application Graph Partitioning

A graph partitioning mechanism is developed to address the problem of deploying application graphs across
multiple providers [27]; in this problem formulation, each application is modelled as (G4, L,). G, is a
connected, labelled, undirected graph (1 , E,); V, is the set of the application components, and Ej, is the set
of relationships between them. Each application component u € V, has a label [c%, c//] denoting the CPU
demand range; each relationship {u, v} € E, is labelled by [b{Lu,v}, b{lfw}], denoting the bandwidth demand
range. L, is a global label that characterizes the entire graph and models the application objective. In the
current work, the application objective is high performance or energy efficiency. Let P = {1, ..., p} be the set
of available providers. Every provider is associated with an infrastructure; this is also modelled as an
undirected, labelled connected graph Gsp = (Vsp,Esp), with {Ci}ievsp, {B{i,j}}{i,j}EEf denoting the CPU
capacity on computing nodes and bandwidth on links, respectively. Additional important parameters
associated with each provider include the degradation factor d,, (this factor expresses collective provider
profiling and its real potential to maintain promised resources reservations, increasing as the percentage of
intent violations increases), the energy consumption due to the consumption of CPU resources eszU, the

intra-provider energy consumption due to the produced network traffic ezlfW, and the inter-provider energy

BW

consumption due to the produced network traffic €pp'

All valid graph partitions of the application graph are generated for each incoming request. For each valid
partition, all possible placements are tested. A candidate placement solution assigns the partition sub-graphs
to the available providers. The selected providers are called to suggest a deployment plan for the assigned
subparts arising from the solution of the optimization problem described below. In case of infeasibilities with
respect to the providers’ available resources, this candidate solution is rejected, otherwise an offering O is

being formed based on the allocated CPU and bandwidth resources. Let {yu,p}uEVapEP be an allocation

matrix where y,, ,, is equal to 1 if the component u is deployed in the provider p, otherwise 0. Similarly,

{Cpu'p}ueVa,peP and {bw{u'v}'p}{u,v}EEa,pEP are defined to formulate the CPU and bandwidth allocated to a

provider p for each application component and relationship, respectively. The offering varies according to
the application objective.
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e Performance:

P P
0= Z Z Cpu,p(l - dp) + Z Z bw{u,v},p + Z Zyu,p Z yu,p’bgi,v}'

UEV, PEP {u,v}€E, pEP {u,v}€E, p=1 p'=p+1

e Energy efficiency:

P P
0= Z Z cpup(1—dy)estV + Z Z bwg,mpep” + Z Zyu,p Z yu'p:bg,v}eg’l;/,.

UEV, PEP {u,v}€E, peP {u,v}€E, p=1 p'=p+1

Itis important to note that, for the performance-related objective, when components u and v are co-located
on the same physical node within a provider, the bandwidth term bwy, .3 ,, is set equal to b{l:l;,v}- Under the
assumption of infinite bandwidth on inter-provider links, the bandwidth allocated between two interacting
components corresponds to the upper bound when optimizing for performance and to the lower bound
when optimizing for energy efficiency. Each application optimizes O over all valid graph partitions over all
candidate placements. Besides the initial deployment, this mechanism is triggered by Control Loop 3 during
the refinement of a single component and relocation to an alternative provider.

Intra-Provider Deployment Plan

For a single provider infrastructure, the provider p € P must solve an online placement and resource
allocation problem [27]. An indicative way to formulate the problem is the following.

Minimize Z Z(x:; e iy 4 Z (b2 oy = b))

UEV, iEVSp {wvl€Eq
subject to constraints (4.4.2) — (4.4.15) (44.1a)

Xl fo L €401}, (44.1b)

u,v} J{u,v}

cl, b pUD b € Ny (44.1.¢)

fuvy “{uvd

vu € V,, Vi € VP, v{u,v} € E,,v{i,j} €EF. (4.4.1.d)

The placement of application components is described by binary variables x}, , which indicate if a component
u is assigned to a computing node i. Each component is assigned to exactly one node.

Z xi=1, VueV, (44.2)
ievP

We define constraints to ensure that the assigned components will not violate the remaining CPU resources
of a computing node. In contrast, the allocated resources remain within the acceptable range of the
components’ requests.

Z ck<cCh vieVt, (4.4.3)
UEVy

xioch<cl<xi-cl, vueV,vieVP (4.4.4)
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@) f(f,i)
u,v} ’ H{uv}
specific link {i, j}. Although links are modeled as undirected in each provider’s infrastructure, in our problem
formulation, we distinguish between the two possible directions, represented as directed links (i, ) and
(j, ©). These directional links share the same underlying physical resources, particularly bandwidth capacity.

We impose the constraint that for each such pair, at most one direction can be selected. To ensure proper

We establish routing variables f{ to indicate whether an interaction {u, v} is routed through a

path construction and prevent the creation of loops, we augment the initial graph Gsp by introducing a source
node s that initiates all flows {u, v}, and a destination node d where these flows terminate. Each node i €
I/;p is connected to the source node s via a directed link (s, i), and to the destination node d via a directed
link (i,d), both of which are assumed to have infinite bandwidth. In the following, we establish routing
constraints to capture the well-known flow conservation and unsplittable flow restrictions, and constraints
to prevent loops in a path. It is important to note that § (i) = {(j, D|{i,j}ekE? } denotes the incoming
links of a node i € Vsp, assuming that the initial undirected graph Gsp is treated as a directed graph where
each undirected link is replaced by two directed links in opposite directions. Similarly, &§*(i) =
{@@,)) | {i,j} € E¥ } denotes the set of outgoing links from node i.

f = Z U0 =0, (445)

jest(@u{d} jES~(DU{s}
fon <1, (446)
jeST(u{d}
I <1, (447
jes=u(s)
foD =x, (448)

fol =xi, (449

wv}
v{u,v} € E,,Vi € VP

Similarly to computing nodes, we define capacity constraints for the bandwidth resources of links.

Z bGP + b < BUD, i, j} € EP,  (4.4.10),
{u,v}€E,

()N @i.j) G)) LH
ﬁ . b{u‘v} S b{u,‘l}} S f‘{ . b{u,v}' (44.11)

u,v} u,v}

Uii) G.D) Gid)
f{“ “buwy S by < famy  bluvy  (44.12)

u,v} {u,v} u,v}
vi{u,v} € E,,V{i,j} € EX u{(s,) |ie VP }u{(Gd)|ieVP}

To guarantee the same bandwidth allocation at each physical link of a formed path, we introduce new integer
variables B{u_,,} that denote the bandwidth assigned for the interaction {u, v} and add the following
bandwidth-conservation constraints.

Z b = by (44.13)

ievP
=
Z bioh) = by (44.14)
iev?
(&) G _
buwy ~ Z by =0, (44.15)
jE(§+(i)U{d} j€6_(i)U{S}

viu,v} € V,vi€eVr
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4.4.2 Experimental Evaluation

As described in detail in D2.4, the simulation kit captures the creation of application graph services, their
deployment on the multi-provider infrastructure and the continuous lifecycle management of their intent. The
management framework introduces three control loops, with the first one performing semantic and syntactic
validation of the client intent before the initial deployment, the second control loop models short-term intra-
provider orchestration actions based on the well-being of the application component and the third control loop
implements a long term intent monitoring, proposing intent refinements and inter-provider re-deployments as
well as assessing the quality of each provider, useful information for subsequent deployments.

For the experimental evaluation, we assume that each application request has an aggregate workload profile
(which is unknown to the control loops) of three different types: Variable, Bursty and Uniform. Apart from
its type, the aggregate workload also has one out of three volume levels (Low, Medium, High) [27]. The
aggregate workload is modelled as a Markov Modulated Poisson Process (MMPP), so the type of the
workload determines its transition probability matrix of the next state of the internal Markov chain, and the
volume sets the Poisson rate’s values, based on which the aggregate workload object generates its value
(following Poisson distribution) for the current slot. Furthermore, each component has also a Type (Typel,
Type2, Type3) as part of the user intent which classifies the component either as CORE or SUPPORT. We
assume that Typel components are CORE and the rest are SUPPORT. This distinction is necessary for
capturing the importance of each component in the application graph since CORE components are
considered to be more resource demanding and in general require more CPU resources when compared with
their SUPPORT counterparts. The simulation kit handles CPU and Bandwidth resources and their amount is
declared through three distinct ranges (LOW, MEDIUM, HIGH), while only the CPU resource has a dynamic
behavior. At each timeslot the generated CPU aggregate workload is distributed at the application
components based on their own internal state and Type, and by translating through a linear function, we
produce the final CPU consumption for each component for the timeslot. Concerning the infrastructure
providers, each provider has a type based on which its monetization and resource quality (reduced due to
oversubscription of the shared physical resources) are determined. The corrective actions of the three
control loops are based on the implementation provided in MECC paper.

Two deployment scenarios are examined, the first focusing on an intent with high performance objective,
identified by index P, and the second on an intent with high energy efficiency objective, identified by index
E. The total number of components per application graph is considered to be up to four, while the
infrastructure of each provider may reach up to ten nodes. Three infrastructure providers are considered,
each of a different type; Performance-Oriented, Moderate-Cost, and Energy-Efficient. The three types offer
high to low quality resources and high to low cost policies per CPU/bandwidth unit, with the inter-provider
communication cost being higher that the intra-provider communication. Requests for application
deployment, described by an intent of type P or type E, continuously arrive in the system.

We compare the results achieved based on a Legacy Request Management (LRM) approach where no intent
control loop is activated but only a mechanism that, during application runtime, initial resources reservations
are attempted to be maintained at all times within the provider (a common alternative to intent control loop
2 that does not require applications to expose information to the provider), and the Intent Lifecycle
Management (ILM) approaches where various control loops are activated. Six scenarios are considered, with
each one activating different control loops, as follows: (i) LRM method (Legacy), (ii) LRM with ILM control
loop 1 (Loop 1), (iii) LRM with ILM control loop 3 (Loop 3), (iv) LRM with ILM control loop 1 and 3 (Loop 1 & 3),
(v) LRM with ILM control loop 2 (Loop 2), and (vi) all ILM control loops (All Loops). When control loop 2 is
activated, violations are considered periodically within a short time interval (equal to 100 time slots) and actions
are taken at the end of each period. The same short period is considered in the Legacy case as well. In the case
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of an activated loop 3, actions are taken after considering violations (as well as actual provided resources) for a
longer period (every 1000 slots). Loop 1 takes initial corrective actions on the intent definition based on the
predicted application profile. Loop 2 makes temporal adjustments within the provider to reduce violations
according to the short-term application profile. Loop 3 contributes to building the actual application profile and
the provider profile, driving associated actions; reconsidering intent definition and intent placement
considering actual application demands and actual resources provided. The fundamental difference between
Loop 2 and the considered Legacy approach is that Loop 2 uses information about violations exposed by the
application, where in the Legacy case there is no insight on the application's internal operation but only an
external view of the resources usage and the effort is to maintain initial reservations.

The metrics used for evaluation include the total intent violations and the percentage of intents with
violations to the accepted intents for both type P and E intents, the cost incurred by deploying the
applications across the providers in terms of CPU and bandwidth, and the deployed components per
provider. Intent violation occurs for request i at timeslot t when at least one component’s CPU consumption
is greater than the effective CPU (the actual CPU offered to the component by the provider as a result of the
oversubscription). For the evaluation of the proposed framework, we examined 10 sets of providers and 5
sets of requests per provider set, thus conducting 50 experiments in total and presenting the average of the
aforementioned metrics across all experiments.

In Figure 4-41, we show the total intent violations for both type P and type E intents. The LRM scenario is
shown to have the poorest performance in reducing intent violations in both cases. In the type P intent
(Figure 4-41(a)), significant improvement occurs in case of activation of Loop 2, since it enables dynamic
resource management. Loop 1 also achieves remarkable performance by successfully profiling requests to
acquire adequate resources for their execution at initial deployment. Loop 3 reduces violations on a smaller
scale due to larger activation windows but if coupled with Loop 1, they outperform both Loop 1 and Loop 2
scenarios. When all loops are activated, the system achieves its best performance, as Loop 1 ensures
sufficient resources for initial deployment, Loop 2 takes fast corrective actions for resource increase and Loop
3 guides initial and re-placement of type P intents at higher quality providers. In case of type E intents, a
similar behavior can be observed (Figure 4-41(b)) with Loop 3 prioritizing migrations to lower cost providers.
Loops 1 & 2 prove to be the most effective loops by prioritizing performance maximization and share
common implementation across intent types, explaining the similar pattern in the scenarios behavior.
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Figure 4-41: Intent Violations per time slot [27].
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In Table 8, we present the amount of accepted requests for each scenario and intent type. It is clear that the LRM
and Loop 3 approaches perform the best in terms of acceptance while Loops 1 & 2 exhibit the worst acceptance
capability as both loops rely on greedy resource increase to reduce intent violations which leads to fast depletion
of available resources for new requests. On the other hand, Loop 3, after examining an intent's workload pattern
for a long time-window, it may decide to lower resources thus ensuring cost reduction and better provider
availability without sacrificing performance. The All Loops scenario balances the aforementioned approaches,
showcasing the trade-off between over-provisioning and provider acceptance ratio.

Table 8. Accepted requests per scenario and intent type [27].

[ Method High performance | Energy efficient
Legacy 186 180
Loop 1 165 159
Loop 3 188 181
Loop 1&3 174 167
Loop 2 162 157
All Loops 171 165

To enable a direct comparison of the lifecycle scenarios, we express their intent violations at timeslot t as a
percentage of the total requests they have accepted up to that point. The resulting plots (Figure 4-42) confirm
the insights drawn from the raw violation counts and clearly show that the All Loops scenario consistently
achieves the highest quality in intent deployments. As anticipated, once the scenarios converge, the
percentages for type P intents are lower than those for type E intents, illustrating the balance between
guaranteeing performance and reducing cost.
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Figure 4-42: Intent Violation percentage per time slot [27].

In Figure 4-43, the CPU cost (serving as an indicator of energy usage) is notably lower for type E intents,
demonstrating the effectiveness of the control loops and the initial deployment strategy under this intent
directive. For type P requests, All Loops exhibits the highest energy consumption, which contrasts with the
behavior observed for type E intents, where it aligns well with the goal of minimizing cost. Overall, Loop 3 is
the primary driver of cost optimization, as it is the only control loop that accounts for the intent directive,
resulting in higher consumption in the High-Performance context and the lowest consumption in the Energy-
Efficient context.
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Figure 4-43: CPU cost (xl'D_) per time slot [27].

In Figure 4-44, we present the bandwidth cost for each scenario. For type P intents, LRM, Loop 2 and Loop 1
present the highest bandwidth cost as their initial placement is completely random and does not consider
provider cost. The scenarios that have Loop 3 activated will perform migrations that will gather many
components that where mistakenly placed on lower cost providers on the higher quality providers, thus
reducing their inter-provider communication. For type E intents, the bandwidth cost is significantly reduced
when compared to the type P intents, as the framework prioritizes placement on the lower cost provider and
ideally on the same node. When migrations have to take place (Loop 2 & 3) the deployment manager often
changes the placement node of the component, thus inflicting intra-provider communication cost and in
rarer cases inter-provider cost.

R Lot 1P = 156p 5P —ae l5ea 1k 5 - loop P w1 L prEAP b= Logaiyd Roop 10 =M Lpop 3P de= Loop L& 50 ol Qoop 2F b AN loonef
195 eadbbbb S —————
ol e
— — -
& 150 s o -
-; T s g
-7 b i s —
® T it a2 30 st
2 i g ;‘,_.-a
w 1001 v
£ L
T 75 ¥
z z
T 50 -
5 510
a @
of ¢ o
] 00 1000 1500 2000 2500 3000 3500 4000 (1] 500 1000 1500 2000 2500 3000 3500 4000
Time Steps Time Steps
(a) High performance intent (b) Energy efficient intent

Figure 4-44: Bandwidth cost (x 1 'D_) per time slot [27].

In Figure 4-45, we show the evolution of the number of components deployed per type of provider over time
for the All Loops scenario. For type P intents, before the Loop 3 activation of the first accepted request
(around 1000 slots), deployment manager assumes high quality across all providers which constitutes the
placement decision a random choice when the same amount of resource offering occurs. This will result in
many type P components being placed on the Energy Efficient provider, where their performance will fall
short. When Loop 3 updates Deployment Manager knowledge about the degradation factor of each provider,
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we can observe intense inter-provider migration towards Performance-Oriented Provider. For type E intents,
the deployment manager is heavily inclined in placing all components to the cheaper provider if possible, which
rapidly increases the number of components of the Energy Efficient provider, rapidly depleting its resources,
and repeating the process with the next available low cost provider, in this case the Moderate-cost one.
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Figure 4-45: Deployed components per provider over time [27].

Overall, control Loops 1 & 2 appear to be the most effective when considering intent satisfaction, while loop
3 successfully captures the client's intent and ensures performance or cost reduction. Loop 1 relies on
successful application profiling to efficiently suggest intent refinements. However, when this profiling is
coarse, greedy and rule-based it can lead to over or under provisioning of resources. Loop 2 on the other
hand, is a reliable mechanism that can make short-term resource adjustments based on metrics exposed to
the provider about the "well-being" of the application, ensuring continuous satisfaction, with the trade-off
of increasing energy consumption. Finally, Loop 3 can provide higher quality intent suggestions as well as
metrics about the quality of the provider, optimizing energy consumption ideally without sacrificing
performance. The whole experimentation setup, results and discussion is described in [27].
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5 Green Observability and Profiling in the 5/6G Continuum

The overall 6Green observability framework is depicted in Figure 5-1. Metrics for services executed over
on-premise or public infrastructures are collected through a classical Time Series Database (TSDB) solution
and customized probes. Policies are used to reconcile information presented to the framework, either to
extract KPIs from infrastructures metrics, either to simulate resources usage for external web services.
Resulting information is provided to analytics modules and dashboards.

Infrastructures Observability framework Analytics
Monitoring
Services - V.~ TN Scheduler
Cloud Rating Operator A Scheduling
/7
) TSDB \ ) /I
LA < e ers
Edge | 471 N Policies =4
N 4
N 5 ‘ I/
—
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Web N L \ ) \
\

Web Services 7 \ Users
|
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Figure 5-1: 6Green observability framework architecture.

5.1 Data Fusion Mechanisms

We consider data fusion of observability signals that can be classified into metrics, logs and traces (see
Figure 5-2). Metrics are numerical data that capture the state of a system at a particular time or over a period.
They serve as basic information for quick response and decision-making within an orchestration system, such
as rule-based mechanisms for auto-scaling based on predefined thresholds. These metrics can take various
forms, including counters (e.g., counting incoming HTTP requests), gauges (e.g., measuring the current depth
of a queue), or histograms (e.g., depicting the duration of a request). Examples of commonly monitored
metrics encompass resource usage (like CPU or memory usage), traffic volume (such as incoming or outgoing
traffic per second), and the number of requests handled (e.g., HTTP requests served per second). Monitoring
components within cloud and edge computing orchestration platforms typically provide access to a wide
array of such metrics [28].

Logs are structured records of individual events, presented in a textual format that humans can readily
understand. They typically detail usage patterns, events, activities, and operations within an orchestration
system, such as application debug or error messages. By aggregating data from multiple logs, valuable
insights into specific situations or events can be gleaned. Third-party tools, compatible with cloud and edge
computing orchestration platforms, often facilitate access to these logs [28].

A distributed trace encompasses a sequence of operations that represent a unique transaction managed by
an application. Consequently, these traces can be correlated with a request's scope. Each transaction or
request comprises a series of operations spanning across the microservices of the application. By analyzing
distributed traces, we can gain better insights into the events occurring during a distributed transaction and
pinpoint any delays or bottlenecks within the overall process. Common examples of insights provided by
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distributed tracing include latencies in software execution within microservices, interactions between
microservices, and end-to-end latencies for fulfilling specific requests. Third-party tools, with varying degrees
of integration and interoperability, typically provide access to distributed tracing information within cloud
and edge computing orchestration platforms [28].

Observability involves integrating various types of signals, including metrics, logs, and traces. When deciding
which signals to monitor, it's important to balance the richness of information available against
considerations of performance and complexity. Once the appropriate set of signals has been identified,
collecting relevant information relies on properly instrumenting the deployed software.

Third Party Distributed
. measured by
Tracing Tools

Traces
(request-scoped
information)

measured by

Third Party/Integrated
Logging Tools

Metrics
(aggregated time
series data)

aggregated information

|
related to an event (textual structured

infromation)

measured by represented as

I | |

[Counter} [ Gauge } [Histcgram]

Cloud/Edge Computing
Orchestration Platforms

Figure 5-2: Classification of signals into metrics, logs and traces [28].

In order for a data model to be able to support orchestration in the compute continuum, it needs to support 2
main aspects:

e arepresentation of the resources, i.e., a model of the computing and the network infrastructure,
e an application graph representation, modelling designed service communication patterns and data
transfers.

Taking into consideration a multi-cluster infrastructure, the main entities constituting the computing
representation should include the cluster and the corresponding physical or virtual computing nodes of each
cluster. The network representation is described as a graph of network connections (links) between network
nodes (e.g. routers/switches), while it is also crucial to provide support for virtual links created by network
controllers (e.g. SDN) to make network performance guarantees (Figure 5-3). Runtime information of
applications placed in the continuum is important to be registered close to the infrastructure for supporting
orchestration actions. Specifically, a deployment identifying the placement cluster and replication factor of
each service represents the application instance, while an individual runtime instance records a replica’s
resource utilization and state.
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Figure 5-3: Data representation.

A detailed application description is important for identifying its underlying complexity and its connectivity
characteristics that can be utilized to optimize its performance (Figure 5-4). An application graph is defined
as a network of services interacting with each other through their endpoints. For one service to access
another, a service call (link) is made having a specific payload size. A sequence of service calls makes up a
directed acyclic graph (DAG), a workflow executing a certain functionality. The service’s runtime information
is recorded in the infrastructure model as discussed above, so each service maps to a deployment.

Service Application Workflow
app ——® name < app
Y
Infrastructure €<——  deployment
ServiceLink
Endpoint o cource
service «——— destination
workflow
Figure 5-4: Application/Service representation.
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5.2 Profiling Mechanisms

A recent and comprehensive study published by CNIT [29], has clearly summarized the profiling power

consumption most used approaches in the following Figure 5-5, where we schematically see the most
interesting aspects:

5.2.1 The Rating Operator Tool

Workload characterization and instrumentation.

Resource instrumentation.

Resource Specific workloads.

Direct power measurements.
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Figure 5-5: Profiling Power Consumption.

The Rating Operator serves as a Kubernetes application. Operators can be considered as extensions to the
microservices hypervisor. The Rating Operator follows this approach to extend the native API. Functionally,
it enables the transformation of metrics into customizable Key Performance Indicators (KPIs) and provides
interfaces for their use in monitoring, supervision or other purposes. This multi-tenant, configurable, and
lightweight operator addresses users’ rating needs. Our involvement in the 6Green Project focused on enhancing
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the tool's ability to model metric transformation rules as units, previously implemented directly in the source
code. In the context of the transformation logic we support, metrics are sourced from various time series
databases (TSDBs), encompassing a wide range of business values with fine diversity and granularity. In response,
we opted to enhance the efficiency of TSDB queries by introducing a dynamic approach, consolidating and
optimising them. This same principle was extended to the values propagated in these TSDBs queries.

The Rating Operator tool facilitates the transformation of metrics into Key Performance Indicators (KPls),
allowing users to define rules for this conversion. For instance, it empowers users to convert metrics related to
compute resources into KPIs representing energy consumption, carbon footprint, or pricing. Figure 5-6 also
illustrates an example of a Rating Operator use case of carbon emission calculation from energy consumption
(orange part). In this example, illustrating the APl developed as part of the project, a first template (query, in
blue) provides a dynamic query, second templates (values, in pink) supply the values populating the query.
Finally, the system returns respective objects (instances, in green) reporting the metric(s) transformation.
Orange part illustrates an example of a Rating Operator use case of carbon emission calculation from energy
consumption.
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Figure 5-6: Example of a Rating Operator use case.

The Rating Operator tool is oriented towards providing a versatile solution for metrics transformation at
different architectural levels. By offering this capability, it becomes a pivotal component in the ecosystem,
enabling the exposure of aggregated metrics and Key Performance Indicators (KPIs) directly to applications.
This strategic approach significantly reduces the reliance on centralised metrics collection and mitigates
concerns related to the data volume resulting from metrics collection. The core of this concept is the
empowerment of each architectural layer to define and generate metrics relevant to its specific functions.
This decentralisation of metrics transformation ensures that applications can access and utilise tailored
metrics and KPIs without the need for a centralised authority. This not only streamlines the integration of
metrics into application logic but also enhances the overall energy efficiency of the system. Furthermore,
by allowing metrics transformation at various architectural levels, the Rating Operator contributes to a
more distributed and responsive system. Applications can dynamically adapt to changing conditions by
utilising locally transformed metrics, leading to a reduction in the latency associated with centralised
metrics collection. This, in turn, enhances the real-time nature of the data available to applications,
fostering agility and responsiveness.
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In the realm of efficient metrics management, the utilisation of Custom Resource Definitions (CRDs) within
the Rating Operator tool proves to be a game-changer. Specifically, when applied to remote servers and
services, CRDs empower users to finely tune and customise the configuration of resources, thereby enabling
precise control over the pace of metrics retrieval. Users can define tailored configurations for each remote
server or service, outlining the parameters governing metrics retrieval intervals. This granular control is
important, especially in diverse and dynamic environments where different servers or services may have
distinct requirements for metric update frequencies. Moreover, by applying scheduling to CRDs, users can
dynamically reconfigure the metrics retrieval pace based on evolving needs or changing conditions. This
adaptive approach ensures that the system optimally adjusts to varying workloads or operational demands,
enhancing overall efficiency. For example, during periods of high demand or critical activities, users can
increase the frequency of metrics retrieval for specific servers or services. Conversely, during less critical
times, they can schedule a more relaxed pace to conserve resources and minimise unnecessary data transfer.
This capability not only optimises resource utilisation but also contributes to the responsiveness and
adaptability of the system.

Figure 5-7 illustrates the use case of metrics transformation at various architectural levels. The observation
of the metric update pace can be leveraged to define new CRDs configuration to limit collection pace in
regards to these updates frequencies.
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Figure 5-7: lllustration of Rating Operator providing metrics transformation at various architectural levels.
In addition to these features, we recently developed the Rating Operator API, which is also used to expose
metrics to users. This API offers a structured and flexible interface to interact with transformed metrics.

Endpoints are organized by their respective resources (e.g., namespaces, pods), and follow a consistent
grammar across categories.
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Below is an example demonstrating a simple query to an endpoint that requires no parameters:

S curl http://127.0.0.1/namespaces
{

"results":[{"namespace":"kube-system", "tenant_id":"default"},{"namespace":"longhorn-
system”,"tenant_id":"default"},{"namespace":"monitoring", "tenant_id":"default"},{"namespace":"rating", "tenant_id":"de
fault"},{"namespace":"unspecified", "tenant_id":"default"}], "total":5

}

Another example uses URL parameters. Endpoints of this type are labeled as [URL]. In the example below,
we use the /metrics/<metric>/<aggregator> pattern. The aggregator handles the time range, and parameters
are passed via the URL. Here, the 'daily' aggregator is used:

# We use the 'daily' aggregator for the example.

S curl http://127.0.0.1/metrics/co2-simulation-eu/daily
{"results":[{"value":15.07968}], "total":1}}

Monitoring Pace Scheduler

Traditional system monitoring often depends on fixed scraping intervals, where metrics are collected at
predetermined, constant times (e.g., every x seconds or x minutes). Although straightforward to
implement, this method presents several drawbacks, especially in dynamic environments or user-centric
applications with fluctuating activity levels. Fixed intervals can lead to inefficient resource utilization, as
data is continuously collected even when there are no meaningful updates, consuming unnecessary
computation and network resources. This inefficiency becomes more pronounced when monitoring
metrics that rarely update. Moreover, in highly dynamic systems, fixed intervals might miss capturing
critical changes promptly, leading to gaps in important data. In resource-limited environments, the
constant overhead from fixed scraping can further strain system performance without offering additional
value when the system is stable. Traditional methods also lack flexibility, making them less suitable for
adaptive, workload-sensitive monitoring.

To address these limitations, we introduce the Monitoring Pace Scheduler, a system that dynamically adjusts
scraping intervals based on the observed rate of metric updates. When metrics are stable, the scraping
frequency is reduced to minimize redundant data collection. Conversely, during periods of rapid change, the
frequency is increased to ensure accurate and timely data capture. This adaptive strategy improves overall
resource efficiency—reducing computation, network load, and storage—making it highly suitable for scalable
and dynamic environments. A configurable threshold allows users to balance between monitoring precision
and resource efficiency, enabling flexibility depending on application needs and metric behavior.

Figure 5-8 shows the result of applying this dynamic monitoring approach. Data points collected under
thresholds of 0.1% and 0.5% demonstrate that the overall shape and trends of the metric are preserved,
while the number of collected points is reduced compared to a baseline fixed-interval method. This
reduction underscores the system’s ability to adapt scraping intervals, preserving data fidelity while
optimizing resource usage.
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Figure 5-8: Total CPU utilization (%) with 0.1% threshold, influencing data collection frequency.

Table 9: Comparison of the baseline and dynamic groups with different thresholds.

Network
Median Precision Bandwidth ':r:flf(:: Storage
Groups scrape Overlay_dx MAPE (%) Reduction . Reduction
interval (s) (%) (CA) REduction (%)
(] (%) 0
Baseline 15 - - - - - -
Dynamic
20 75.39 0.956 3.48 345 346 495
(0.1%)
Dynamic 46 73.32 0.9473 4.67 346 34.7 495
(%) . . . . . .
Dvrami
ynamic 36 67.76 0.9377 474 349 349 495
(10%)
Dvrami
ynamic 80 60.00 0.8084 245 376 376 50.5
(80%)

5.2.2 Resource Profiling Related to Elasticity and Resource Efficiency

Resource autoscaling is a key characteristic of network management systems that wireless network operators
are using in order to provide highly reliable, low latency, large-scale networking services. 5G networks are
the recent answer to tackle this growing networking demand. One of the key approaches is deploying
network services in a cloud-native environment.

In case of containerized network services, Kubernetes provides a threshold-based solution for dynamic
scaling, Horizontal Pod Autoscaler (HPA®). For a given time t; and a performance metric, HPA calculates the
required number of replicas Pjegireq [ti ] based on:

M[ti]l

Pyesirea [ti] = [P [ti] : M
desired

18 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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where current replica count denoted as P [t;], M[t;] denoted as the current metric value and Mj.jyeq is the
desired threshold for the selected metrics. This solution is reactive and HPA takes scaling actions only if the
static threshold is met. When a scaling action is triggered, there is a time delay for creating and making a new
replica operational, which might affect the QoS based on the resource demand at that time.

An alternative solution for Kubernetes HPA is proposed in [30], where an Al-assisted proactive scaling
solution is developed, that can balance the trade-off between operational cost and QoS for a CNF deployment
in a cloud-native environment. To be proactive, the proposed solution utilizes a multi-variant multiple steps
time series forecasting Gated Recurrent Unit (GRU) neural network-based model that predicts the future
resource consumption of the pods which belongs to a single deployment. The dynamic scaling is calculated
by dynamic thresholding rules that utilize the predicted metric values provided by the forecasting model.

Solutions leveraging Artificial Intelligence (Al), Machine Learning (ML), and Data Analytics (DA) show great
promise in delivering significant advancements in 5G and beyond complex network environments. By utilizing
those technologies, we can propose innovative mechanisms for analysing and predicting network behavioural
patterns, and extract profiles associated with the resource requirements of network services. In [31] an
application profiling modelling component is introduced, that collects a set of distinct resource profiles, all
associated with a resource allocation solution that calculates scaling decisions based on a simple ML technique,
without violating QoS requirements, in case of Kubernetes Edge Clusters. This ML technique involves the
classification of distinct combinations of computing resources concerning the application’s service rate.

In 6Green we could follow the approach of [32], where an integrated framework based on open-source tools
is proposed, that offers flexibility in service providers to realise experiments and achieve profiling of their
applications in terms of resource and elasticity efficiency. The benchmarking describes the process of running
experiments. After the benchmarking process, the resulting data is kept in a time-series database from where
it can be picked up for the profiling process.

A set of analysis processes are supported to extract insights [32] such as:

e Resource efficiency analysis for the identification of resource consumption trends and capacity limits,
used for planning optimal reservation of resources. The considered monitored metrics combine a
resource usage metric (e.g. CPU usage, memory usage) with a service output metric (e.g., traffic
served, HTTP requests served, active users). Such an analysis is realised through the production of
(multiple) linear regression models.

e Elasticity efficiency analysis to assess the performance of scaling operations, along with the impact of
scaling actions in the service output efficiency (e.g., traffic served by a VNF). Elasticity efficiency is
expressed as a pair of discrete metrics, namely application capacity change (incremental capacity
change related to a scaling action) and capacity change lead time (time required for a capacity
change). Such an analysis is primarily based on monitoring and visualisation of elasticity actions. In a
second stage, training and application of machine learning models for automated elasticity actions
enforcement is considered by service providers, facilitating the undertaking of proactive elasticity
actions for guaranteeing QoS.

e Correlation analysis for the identification of strong and statistically significant correlations among
infrastructure and VNF-specific metrics, leading to various insights (e.g., which parameters are highly
dependent, which parameters can create bottlenecks in the overall performance). Such an analysis is
realised through correlograms.

e Forecasting based on time-series decomposition mechanisms. Such mechanisms are applied over
resource usage or workload metrics and provide feedback to elasticity efficiency mechanisms. Various
forecasting models are supported based on the type of the time series data.
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e Graph analysis for identification of bottlenecks in software functions' calls and the consideration of
software updates for optimal service provision. Such an analysis is valuable for software consisted of
microservices, where performance issues and bottlenecks due to software functions' calls can be
identified and provided as feedback to software developers.

5.3 Estimation of Energy Consumption of Hardware Components

Estimating the embodied energy consumption of virtualized components (i.e. containers and VMs) is
challenging, primarily because hardware resources are not reserved for single virtual components. In 6Green,
MDAF and IDAF are utilized to map hardware power consumption effectively.

Scaphandre®®, which relies on Intel RAPL? counters and on the time spent on each process by CPU to
compute the power consumption per process (containers and VMs), traditionally measures only direct power
consumption of virtual components at the CPU and, only in some cases, DRAM controller levels.

However, it is noted that indirect contributions arise from processes necessary to maintain servers and
virtualized environments. Our approach extends Scaphandre by incorporating "embodied" power
consumption, defined as power usage from kernel-level processes not directly attributed to containers or
pods hosting only 6G components. To appropriately distribute this embodied power among virtual
components, we leverage metrics from cAdvisor??, which provides resource (CPU, memory, network, etc.)
utilization for containers. The mapping of the “embodied” power consumption is shown in Figure 5-9. The
kernel-level metrics are divided, manually, into categories based on affinity. Then, each category is
proportional ascribed to the appropriate virtual components. Regarding Kubernetes containers, that are
expected to be the main form under which a 6G network will be deployed, we exploit the cAdvisor metrics:
the purple, light blue and orange categories are mapped proportionally to the CPU, network, and memory
consumption, respectively. While for VMs and Docker containers, supposing their resource utilization are not
available, the mapping is uniform among all the instances. Finally, the monitoring category is isolated since
it includes all the processes, not containerized, that are needed for monitoring purposes.

5.3.1 Energy Consumption Measurements Based on Kubernetes, Scaphandre and Kepler

To demonstrate our approach, we deployed a containerized Iperf application in a 2-node Kubernetes cluster.
The setup consisted of one master node (4 CPUs, 264 GB RAM) and one worker node (2 CPUs, 96 GB RAM),
both equipped with Mellanox MT27500 NICs. On both servers, monitoring applications are deployed. The
tests consist of one couple of Iperf3 server and client deployed as K8s containers: one in each K8s node in order
to generate inter-node traffic. UDP traffic is generated while the bitrate of Iperf3 is changed from 1 Gigabit/s to
1Mbit/s. Each generation lasts 15 minutes and is followed by a 5-minute pause. The monitoring applications
mentioned before export the metrics on to a Prometheus?? database with a 10 second scraping interval.

Figure 5-10 shows the power consumption of the hosts and the Iperf containers. The green plot represents
the power consumption of the whole server (i.e., including every component) measured by the Raritan power
outlet (the IX7™ PDU Controller in detail). The orange plot represents the power consumption of the whole
server measured by Intel RAPL. The yellow plot shows the power consumption of the Iperf containers (i.e.,
the server and the client in Figure 5-10), the grey plot represents the power consumption of the Iperf
containers produced by the MDAF; finally, the blue plot represents the different bit rates which the test used.

19 https://hubblo-org.github.io/scaphandre-documentation/

20 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/running-average-power-limit-energy-reporting.html

21 https://github.com/google/cadvisor

22 https://prometheus.io/
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Figure 5-9: Categorization and mapping of the kernel level metrics.

First, let us focus on the server-level results: in both figures the Raritan power consumption is higher than
the RAPL one; this is to be expected since the RAPL component only measures the power consumption of the
CPU, while the Raritan one considers every component including the power supply. Then, considering the
grey and yellow plots, it is worth noticing that, as expected, the container power consumption plots have
lower values with respect to the other two.

Additionally, a comparison between the proposed solution (i.e., MDAF) and the Scaphandre solution is needed.
In Figure 5-10 we can notice that Scaphandre underestimates the container power consumption since it
considers only the container direct usage of the CPU. While our proposed MDAF takes into account the
“embodied” power consumption due to all the kernel processes needed to keep the whole system
(virtualization platforms included) up and running. Moreover, as shown in Figure 5-10, both the server and the
client power consumption (i.e., yellow and grey plots) decrease with the Iperf Bitrate. This is more visible in the
server than in the client. The former processes receiving packets when an interrupt is launched and then sends
back reply packets. While the latter simply generates only the first packet and then sends it according to the
decreasing bitrate. Finally, comparing the two sides of Figure 5-10 (i.e., the Iperf server and client), it can be
noticed from the yellow and grey plots that the client consumes much less power than the server.
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Figure 5-10: Power consumption of both the host (left) measured by the Raritan and RAPL and of the Iperf server/ client
(right) measured by Scaphandre and the MIDAF while the Iperf bitrate varies from 1 Gigabit/s to 1 Mbit/s.

Furthermore, to point out more easily the differences between the MDAF and Scaphandre plots, Table 10 is
inserted. It shows the difference in % (in terms of mean value and standard deviation) between the MDAF
and the Scaphandre container power consumption for the Iperf server and client respectively. First, analyzing
the server columns of Table 10, we can notice that the difference between MDAF and Scaphandre increases
when the Iperf bitrate decreases. Therefore, as the throughput decreases, the operations per packet the
server carries out increase. This occurs because when the incoming traffic volume is low, an interrupt is
launched every one or very few packets; while, when the incoming traffic volume is high, an interrupt is
launched every several packets. Then, comparing the server and client columns, it can be noticed that, on
the one hand, the mean value of the difference in the client case is almost constant, while this is not true for
the server; on the other hand, the standard deviations are much lower in the client (and almost constant)
case compared to the server case. This shows a much higher variability in the server rather than the client.
This can be explained with the tasks that each does. The server’s variability is much higher because its tasks
(processing packets and sending replies) depend on external triggers (interrupts caused by incoming
packets). While the client consists in a software that generates and sends packets; therefore, the operating
system scheduler (rather than an external trigger) is in charge of reserving the CPU for the Iperf software.
This results in less variability in the client.

Table 10: Mean value and standard deviation of the difference in % between the MDAF and the Scaphandre container
power consumption for the Iperf server and client respectively.

Iperf Bitrate M;aer:‘:/::)u = Std (server) M?:I?e‘::;ue Std (client)
1 Gbit/s 19.6% 2.01% 4.35% 1.35%
100 Mbit/s 43.4% 4.31% 3.86% 1.34%
10 Mbit/s 52.0% 7.40% 4.06% 0.88%
1 Mbit/s 56.7% 8.40% 3.92% 1.08%

Following, we provide results regarding the mapping of consumption of hardware components to cloud
resources (Kubernetes setup).
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Energy measurement tool comparison between Scaphandre and Kepler

Having deployed a Kubernetes single node cluster on bare metal, we have installed Kepler and Scaphandre
together in order to perform a comparison between both tools. We have used Prometheus to scrape both
tools’ metrics every 10s and configured Grafana in order to create a visual dashboard where it could be seen,
in several visualizations, the details of the different metrics. One of the main differences between Kepler and
Scaphandre is that Scaphandre gives most of its energy metrics in Gauge type and in terms of Power(W),
while Kepler in Counter type and in terms of energy(J). So, when comparing one to the other we need to
convert the energy metric to power using Promql’s rate operator. In all the figures we have Scaphandre on
the left and Kepler on the right. First of all, we have the node power consumption in Watts (Figure 5-11).

(Scaphandre) Node power consumption (Kepler) Node power consumption

Figure 5-11: Node power consumption.

Then, host power vs aggregation of processes (Figure 5-12). This represents the previous metric compared
directly with the sum by node of the containers’ metrics.

(Scaphandre) Host Power vs Aggregation of processes (Kepler) Host Power vs Aggregation of Containers

Figure 5-12: Host power vs Aggregation of processes/containers.

In Figure 5-13, Figure 5-14 and Figure 5-15 we can see directly the metrics of the containers of the host in
different types of visualizations: Time series, table and state timeline.

(Scaphandre) Containers (Kepler) containers

Figure 5-13: Containers.
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(Scaphandre) Containers

container_id container_name Value + container_id container_name Value +

Figure 5-15: Containers (state timeline).

Lastly, in Figure 5-16 we have the metrics aggregated by pod.

(Scaphandre) Pod Consumption in W (Kepler) Pods consumption in W

Figure 5-16: Pods.

In Figure 5-17, we can see the results of a test that we performed. The test consists in horizontally scaling a
pod that request 0.5 Cores. We trigger the scaling every 3 minutes. The results are in our opinion quite
normal, although interesting. We can see that, up to a certain point, scaling horizontally causes the
consumption/container to decrease (even though the total consumption goes up). However, when certain
load is reached, the addition of more replicas causes the total consumption to grow exponentially and the
share per container to increase.
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Figure 5-17: Horizontal pod scaling test.

Kubernetes Consumption Measurement Using Scaphandre

Using Grafana, we created a dashboard to visually analyse the consumption of a Kubernetes cluster broken
down into the different resources that such cluster might have, such as: Containers, Pods, Deployments,
Replicasets, DaemonSets and Namespaces (Figure 5-18).

Figure 5-18: Scaphandre dashboard.
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OpenShift Consumption Measurement Using Kepler

Production setups are usually based on hardened Kubernetes distributions such as Red Hat’s OpenShift
Container Platform, which also supports seamless integration with Kepler, as shown in Figure 5-19.
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Compute
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Figure 5-19: OCP observability dashboard with Kepler integrated.

The “Power Monitoring / Overview” dashboard page shows the system information (e.g., CPU architecture,
number of nodes in the cluster), system-level energy consumption, as well as the top 10 energy consuming
namespaces. On the other hand, the “Power Monitoring / Namespace” dashboard page shows the
namespace- and pod-level power and energy consumptions.

Consumption Based on OpenShift and Keppler

A single node Openshift (SNO) has been set up with Kepler on bare metal and has been evaluated with DPDK
I3fwd application, as shown in Figure 5-20. The I13fwd namespace includes 2 pods, each mapped to a NUMA
node and NIC. DPDK Pktgen is running on a separate server, able to generate up to 100 Gbps (i.e., 4 x 25
Gbps) to the I3fwd app. A scaled down 24-hour traffic profile, as shown in Figure 5-21, is used as basis for the
input traffic, which is load balanced across the 4 links.

Intel(R) Xeon(R) Gold Intel(R) Xeon(R) Gold
6438N 6428N

Kepler
L3FWD-numa0
L3FWD-numa1

|
- Pktgen
——

Figure 5-20: DPDK I3fwd app running on single node OpenShift with Kepler integrated.
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24-hr traffic profile

Hiur

Figure 5-21: Traffic profile generated with Pktgen.

Figure 5-22 and Figure 5-23 show the “Power Monitoring / Overview” and “Power Monitoring / Namespace”
dashboard pages, respectively. In the latter, pod level power consumptions for CPU, RAM, GPU (if available)
and Other are available in addition to namespace-level power and energy consumptions.

It is important to note that polling applications like DPDK-based applications are observed to always remain
in 100% CPU usage despite the actual load. Sleep states are also interrupted by the polling, even when there
is no load. In this respect, solutions such as the Intel® Infrastructure Power Manager look into frequency
scaling for such cases. The technology has been already used by commercial 5G Core vendors together with
DPDK-based UPFs to boost 5G data plane performance, while saving power.

Dashboard

Power Monitoring / Overview -

CPU Architecture by Nodes Inspect Total Energy Consumption (kWh) - Last 24 hours Inspect
CPU architecture T Number of nodes
Sapphire Rapids i ]2 ZkWh
et
1-1afl = 1 oft
Top 10 Energy Consuming Namespaces (kWh) in Last 24 hours Inspect

Mamespace 1 Power Consumption

openshift-etcd 0382
openshift-kube-apiserver 0919
openshift-kube-controller-manager 0.432

openshift-marketplace 156

Figure 5-22: “Power monitoring / Overview” dashboard page.
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Figure 5-23: “Power monitoring / Namespace” dashboard page.

5.3.2 Measurements Based on the Rating Operator

The rating rules of Rating Operator can be used to model energetic affinities between services and their
destination hardware. Furthermore, it empowers users to define transformation rules, enabling them to
convert compute resource metrics into KPIs representing energy consumption or carbon footprint. Figure
5-24 illustrates the monitoring of CPU and RAM consumption within a specific namespace of Rating Operator.
It also shows the monitoring of carbon footprint at different infrastructure locations or architecture levels,
which are transformed from energy consumption using rating rules of Rating Operator.

Align 1/0 operations to the applied power management schemes and obtain useful energy-aware KPIs to
drive energy optimizations

I/O operations are considered from their service counterpart. Each service is then considered as an 1/O
producer in the context of microservices execution. As telecommunication platforms slowly evolves towards
a native support of microservices based execution, this approach is considered both generic and future proof.

The Rating Operator proposes specific rating rules to enable the mapping of resources volumes usage.
For each service, several metrics are tracked, including network bandwidth. Within the rules, queries
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enable the metrics collection, while values are set to enable their transformation towards higher level
KPIs (as in metrics x values).

Rating rules enable a mix of metrics to be considered, for example energy metrics obtained from physical
devices or logical probes can be related to specific services, or specific resources. The level of precision can
be set by the user, either considering a namespace (equivalent of a tenant in the Kubernetes definition) made
of services, or a label that can be attached to one or more services.

Figure 5-24: CPU/RAM usage and carbon footprint monitoring.

5.4 Network Observability and Consumption of Network Equipment

The historical calculation of energy efficiency encompasses the entire network, with all its elements, which
includes both legacy cellular technologies and the radio access and core networks, along with data centers
(Figure 5-25). It is determined by measuring the amount of electrical energy consumed per unit of
transmitted data within a specific time frame, expressed either as Joules per bit or bits per Joule [33], [34].

Energy consumption per network
element %

M Fixed Access
Metro, edge and core
network
Radio Access
Service core

m Data Center

m Residential and Business

Figure 5-25: Energy consumption breakdown by network element, 2025 [35].
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As regards the most expensive segment in terms of energy, the Radio Access one, the network monitoring
activities are oriented to allow the four categories of most effective approaches for increasing the energy
efficiency?®, nominally [36]:

Resource allocation: The primary objective is to enhance the energy efficiency by optimally
distributing the system's radio resources to minimize power consumption instead of prioritizing
throughput. Numerous studies have demonstrated that adopting this approach can result in
significant improvements in energy efficiency, albeit with a minor decrease in throughput.

Network planning and deployment: The second approach involves strategically placing infrastructure
nodes to achieve maximum coverage using minimal energy consumption, instead of just optimizing the
covered areas. Furthermore, implementing radio devices switch-on/switch-off algorithms and antenna
muting techniques allows to further optimize energy usage by adjusting to traffic conditions [37].

Energy harvesting and transfer: The third method involves harvesting energy from the environment
to power communication systems [19].

Hardware solutions: The aim of this approach is to develop radio communication systems' hardware
with a specific focus on energy consumption optimization and implementing significant architectural
modifications [38].

In this context, also pushed by the advanced Machine Learning techniques capabilities that are being applied
more and more frequently, network monitoring has reached a very fine and granular level (Figure 5-26).
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Figure 5-26: ML energy consume prediction.

Among the most important monitored features it is important to mention:

Radio Resource Control (RRC) Connection Types: Emergency, High Priority Access, Mobile
Terminating/Originating Access, Data, Voice Call, and Signalling

Timing Parameters: MAC SDU data reception timing, transmission intervals, buffer management
Latency Measurements: Multiple transmission buffer-related latency metrics

Volume Metrics: Downlink/uplink data radio bearer volumes, signalling radio bearer bits

Filtered Subclasses: Lower/Higher volume filtering categories

2 Please note that also if the desire is to achieve energy savings without impacting performances, the technology may
provide inherent flexibility to the operators in order to set the best balance between energy efficiency and
performances when it is deemed appropriate and justified.
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Metro, Edge and Core Network Energy Optimization
Energy saving is approached at three hierarchical levels:
Network Level

e Flexible collaboration between domains and technologies (5G-LTE spectrum optimization)

e Comprehensive intelligent power management

e Data movement minimization through hierarchical caching

e Smart utilization of key 5G features: small cell networks, massive MIMO, device-to-device
communications

Site Level

e Renewable energy sources (solar power costs decreased 80% over the last decade)
e Smart lithium batteries
e Cabinet reduction and liquid cooling to minimize air conditioning requirements

Equipment Level

¢ High-efficient hardware implementation
e Automatic activation/deactivation with shut-down options
e Al/ML and predictive analytics for power efficiency optimization

Power Consumption Models

Specialized literature emphasizes the importance of including precise 5GC deployment software architecture
information in network observability, as virtualization technology significantly impacts power consumption
patterns.

Refined power models [39] separate contributions from each active domain:

Total Power Model:

N
Piotat = Phasetine + Z Paomain (k)
K=1

Where Pgomain(k) is the power consumed by an active domain k, and N is the number of domains, and each
domain factor can be referred to a multi-dimensional linear weighted power model:

Piomain = €o + ¢1Pcpy + C2Pcacne tC3Ppram+CaPaisk +

The different contributions are characterized starting from careful testing campaigns (e.g., Figure 5-27 [39])
and further indicate the required quantities that need to be constantly observed and collected.
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Figure 5-27: Power vs threads, CPU frequency and Memory [39].

5.4.1 Power Consumption Monitoring on Cloud-Native 5GS

To validate power consumption monitoring concepts in cloud-native 5G environments, we built a proof of
concept in 5G/6G testbed (Figure 5-28). We extended cloud-native 5G systems, featuring zero-touch
provisioning and end-to-end slicing, with a power measurement toolset. We deployed Netio for power outlet
level measurements, embedded RRU and laa$ tools for RRU input/output and CPU power metering, and the
Scaphandre tool for process-level metering to measure the consumption of BBU, 5G CN, and application
components. The gMON test automation tool was utilized to control and predict user traffic patterns and to
evaluate cloud-native system power consumption under real traffic load.
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scue  (JMON Ant + RRU i x86 Commodity Hardware INIOBILEONE
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loT GW l Application | 5G RAN | 5GCN Application
N 5G Network App Enablers 5G Network Enablers App Enablers
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Figure 5-28: 5G/6G Pilot Environment.

The deployed power measurement toolset enables active measurement of the 5G system's power
consumption from an end-to-end perspective. This includes 5G UE, RRU, BBU, 5G CN, and application
components, providing full visibility of all factors — both hardware and software — that impact the total
power consumption of the mobile environment (Figure 5-29).
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Figure 5-29: Measuring power consumption taking into consideration end-to-end perspective.

To verify the proposed power metering approach, we have deployed 5G system on an x86 NFVI environment,
which allows us to run 5G NR (virtual BBU) and 5G core network functions on a single Kubernetes instance.
This supports container-based deployment of network functions and MANO-compliant orchestration. We
deployed 5GCN (virtual core network) and 5G NR (virtual BBU) as network functions (NF) and corresponding
network services (NS) using Kubernetes deployment principles. With virtual network function descriptors
(VNFD) and network service descriptors (NSD), we can easily reconfigure key 5G NR and Core network
parameters, such as used RRU band and bandwidth, power per radio port on RRU, MIMO Level, TDD mode,
slicing configuration, user bandwidth profile, and user traffic patterns.

We have conducted a series of tests to verify the prepared environment. In the first test, we aimed to observe
the difference between an idle and an active user — where the user is not generating any traffic (UE in idle
mode) and RAN is also in idle mode or when the user is fully utilizing available 5G RAN resources (UE in active
mode). We prepared a test methodology where we generated TCP-based DL traffic for a duration of 2
minutes, followed by an idle time of 1 minute. This testing was repeated in cycles. Figure 5-30 provides an
indicative view on relations and dynamics of power consumption at different components while testing with
before described (cyclic) network load. Based on the observed results, we can conclude:

e During the active test cycle, when the 5G UE is generating traffic, power consumption increases significantly.

e Evenwhenthe userisidle, the 5G system and 5G UE consume significant power. This includes power usage
in hardware standby mode (RRU, laaS server), 5G NR and 5GCN standby mode (BBU, AMF, SMF), and
application standby mode.

o [f user traffic follows a deterministic pattern, then power consumption (RRU, 5G CN, Iperf Server) also
exhibits a deterministic pattern.
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Figure 5-30: Measuring the power consumption of the 5G system, breaking down the hardware and software
components (and indicative view on relations and dynamics of power consumption at different
components while testing with cyclic network load).
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6 Adoption of Enabling Technologies in the 6Green Service-based
Architecture

In the current section, we shortly refer to the adoption of the aforementioned technologies towards the
development of the 6Green Service-based Architecture (SBA), as shown in Figure 6-1.
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Figure 6-1: The 6Green SBA framework.

Following, in Table 11 we highlight the set of main technologies that are adopted towards the development of
each of the components of the 6Green SBA, while a short description for such an adoption is provided in Table 12.

Table 11: Mapping among the Enabling technologies and the components of the SBA.

Enabling Technology

Traffic Offloading X X

Connectivity (Wide-Area
Infrastructure Manager)

Infrastructure as a Code X X X
(MetalCL)

ZeroOps and Automation in Infra-
structure Management (NFVCL)
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Enabling Technology

FaaS programming model X

RAN power management X X
Optimal de.ployment of X X X
network slices

Data Fusion and Profiling X X X X X
Network observability X X X X X
Dynamic QoS management X X X X

Table 12: Short description for the adoption of Enabling technologies per component of the SBA.

SBA Component Main usage of enabling technologies

MDAF The main enabling technology adopted by the MDAF is the Data Fusion and
Profiling one which is exploited to generate more complex data (e.g.,
forecasting the power consumption of cloud native components).

NWDAF The NWDAF adopts two main enabling technologies: Data Fusion and Profiling
and Network Observability. The former is exploited to generate more complex
data by fusing the ones produced by the MDAF and those produced by the
other NFs (e.g., AMF, SMF, etc.). The latter is a crucial part of the NWDAF since
this is the NF devoted to spreading observability information from the sources
(i.e., MDAF, AMF, SMF, etc.) to all the other NFs that request them.

NSDAF The NSDAF enables the network slice analysis in the context of the 6G
architectures, for optimal energy resources consumption, applied in the cloud
native environment. The envisioned SBA integration of the NSDAF component
together with NWDAF (seen as functional sub-component of the NF) will
interact with the other NFs for green infrastructure and services
implementation, with support of 6Green orchestration and automation tools.

PCF/ NSPCF PCF serves as a crucial enabling technology that manages network policies and
enforces rules for data traffic and Quality of Service (QoS). It dynamically
adjusts policies based on real-time network conditions and subscriber data,
ensuring efficient resource utilization and optimal service delivery.

NEF NEF facilitates secure and efficient exposure of network services and
capabilities to third-party applications (AF). It provides a standardized interface
for external applications to interact with the network, ensuring proper access
control, policy enforcement and enabling the traffic offloading mechanism.
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SBA Component Main usage of enabling technologies

AF AF functionalities are provided by the Vertical Application Orchestrator which
is used for managing the deployment and real-time operations of vertical
applications, interfacing seamlessly with end users and network orchestration
systems. Thus, it decouples application layer management from network layer
management, providing an interface for users to manage applications and their
features, and handling the entire lifecycle of vertical applications. This includes
requesting cloud resources, configuring network slices, and implementing
Green Elasticity and Edge Agility based on workload demands. It also provides
capabilities to trigger network and slice configuration changes through Service-
Based Interface (SBls) with the BSSF, dynamically configuring the network to
meet specific application needs in real-time. It operates infrastructure-
agnostically, utilizing a dynamic intent-based system for real-time intent
negotiation and reconfiguration, optimizing resource usage and network
performance with Energy-aware Backpressure information flows.

BSSF Intent management facilitates a ZeroOps and automated network
management by abstracting underlying configurations from verticals. The BSSF
acts as an aggregator of slice requests, enabling the upper layers to automate
processes more reliably. It also allows for profiling in intent management based
on policies assigned to specific vertical types. As a consequence of requesting
a slice, network monitoring is also present in BSSF.

ENIF / NSENIF One of the main enabling technologies adopted in ENIF/NSENIF regard the
mechanisms that support optimal deployment and lifecycle management of a
network slice, considering resources in the RAN, transport and core network
part, as well as deployment in serverless and non-serverless environments.
Intent lifecycle management is supported from the specification of the intent
towards its validation and its monitoring during the lifetime of a service
deployment and operation. Dynamic policies management is applied to satisfy
the requested intent. Data fusion and profiling mechanisms are used to
continuously monitor various performance metrics over the infrastructure,
analyzed data and proceed to decision making. ZeroOps, automation and
infrastructure as a code principles are exploited to increase automation and
distributed intelligence of the provided services by ENIF/NSENIF.

EGMF / NSMF / NFMF NSMF deploys an end-to-end NSI for each network connectivity demand
expressed by AFs. To do this, NSMF consumes the management services of
other 6Green NFs using SBA. For example, NSMF consumes NFMF services to
configure the deployed VNFs/CNFs by NFVO to establish a new NSl or alter an
existing one. To protect the management services from unauthorized AFs,
EGMF, another 6Green NF, is responsible for securely exposing the
management services. Finally, whenever a green decision regarding modifying
an NSl is made, NSMF, as an actuator, is in charge of applying that decision in
the 6Green SBA.
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SBA Component Main usage of enabling technologies

EdgeMF EdgeMF allows the SBA to provide computing resources at the edge to vertical
applications, enabling Edge Agility and Green Elasticity mechanisms. It achieves
this by managing Edge Data Networks (EDN) objects that provide data and
compute services in a specific edge zone, as well as by managing the compute
resources that are made up of one or more EDNs. For this purpose, EdgeMF will
leverage the services of the VAO and the NSMF, and will require services from
the CCMF and the MetalCL infrastructure component.

CCMF The CCMF enables the SBA to maintain a repository of computing resources to
be used to deploy vertical applications, e.g., from Kubernetes clusters.
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7 Conclusions

In accordance with the objectives of WP2, in this deliverable we have listed a set of enabling technologies
that are developed in the 6Green Project and are adopted for the development of the 6Green Service-based
Architecture (SBA).

A wide range of enabling technologies are detailed, including network connectivity management and traffic
offloading mechanisms; cloud-native orchestration mechanisms considering approaches that take advantage
of service-mesh techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps
and continuous automation principles; power management mechanisms for the core, transport and access
part of the continuum by considering serverless workloads; network slice lifecycle management and
optimization techniques, including energy-aware network slice management in O-RAN and multi-provider
settings; and green observability and profiling mechanisms.

Upon the description of the development of the set of enabling technologies, a mapping among the detailed
technologies and the components of the 6Green SBA is provided. This mapping is aligned with the
development of software prototypes for the enabling technologies as detailed in D2.4, as well as with the
development of the 6Green SBA, as detailed in D3.3 and D3.4.
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Annex A: Blueprint Deployment and Lifecycle Management Workflows
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Call Function: add_routes

(all, 37 lines)

Configure VM (ROUTER)
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Figure A-1: Operations required to create a core with the UPF provisioned in a VM.
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Figure A-2: Operations required to create a core with the UPF provisioned in a pod.
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Figure A-3: Operations required to add a DNN.
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Figure A-4: Operations required to add a slice with the UPF provisioned in a VM.
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Figure A-5: Operations required to add a slice with the UPF provisioned in a pod.
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Figure A-6: Operations required to add a TAC with the UPF provisioned in a VM.
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Figure A-7: Operations required to add a TAC with the UPF provisioned in a pod.
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Figure A-9: Operations required to delete a TAC with the UPF provisioned in a VM.
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Figure A-10: Operations required to delete a TAC with the UPF provisioned in a pod.
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Figure A-11: Operations required to delete a slice with the UPF provisioned in a VM.
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Figure A-12: Operations required to delete a slice with the UPF provisioned in a pod.
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Figure A-13: Operations required to delete a core with the UPF provisioned in a VM.
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Figure A-14: Operations required to delete a core with the UPF provisioned in a pod.
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