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S-NSSAI Single – Network Slice Selection Assistance Information 

TSD Time Series Database 

UDM Unified Data Management 

UPF User Plane Function 

URSP UE Route Selection Policy 

VIM Virtual Infrastructure Manager 

VRF Virtual Routing and Forwarding 

WIM Wide-Area Infrastructure Manager  

XDP eXpress Data Path 

NSI Network Slice instance 

EGMF Exposure Governance Management Function 
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Abbreviation / Term Description 

NSMF Network Slice Management Function 

NFMF Network Function Management Function 

NFVO Network Functions Virtualization Orchestrator 

VNF Virtualized Network Function 

CNF Containerized Network Function 
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Executive Summary 

This deliverable details the final version of the work realized within 6Green towards the specification of a set 

of enabling technologies that are adopted towards the development of the 6Green Service Based 

Architecture (SBA) in WP3, as well as towards the development of vertical application orchestration 

mechanisms in WP4. It builds upon the results provided in the D3.2 that detailed the work in progress in the 

implementation of these technologies in M18 of the project. 

The set of enabling technologies include: 

 network connectivity management and traffic offloading mechanisms, 

 cloud-native orchestration mechanisms considering approaches that take advantage of service-mesh 

techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps and 

continuous automation principles, 

 power management mechanisms for the core, transport and access part of the continuum by 

considering serverless workloads, 

 network slice lifecycle management and optimization techniques, including energy-aware network 

slice management in O-RAN and multi-provider settings, and 

 green observability and profiling mechanisms. 

For all cases, the final status of the development of the enablers is provided. A mapping of the enabling 

technologies with their adoption toward the development of the various functions of the 6Green SBA is also 

detailed, while information for the developed software prototypes is made available in D2.4. 
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 Introduction 

This document details the activities carried out in the Work Package 2 (WP2), “Green Enabling Technologies for 

Cloud-Native Services” of the 6Green Project. The goal of the 6Green Project is to create an innovative, service-

based, and comprehensive ecosystem that expands the communication infrastructure into a sustainable, 

interconnected, and greener end-to-end inter-computing system. It aims to promote energy efficiency across the 

entire 5/6G value chain and reduce the carbon footprint of 5/6G networks and vertical applications. 

The 6Green Project is structured around three main research axes, which correspond to three administrative 

domains/layers within the architecture: the 5/6G Edge-Cloud Infrastructure, the Network Platform and the 

Vertical Application domains. The corresponding research areas are referred to as “Enabling Technologies for 

Cloud-Native Service Meshes,” “the 6Green Service-based Architecture,” and “Vertical Application Orchestration 

within the 5/6G Green Economy.” These axes must closely collaborate to implement the holistic vision of 6Green. 

WP2 primarily focused on the activities related to the first research axis of the project: “Green Enabling 

Technologies for Cloud-Native Services.” Within WP2, the initial activities involved refining the architectural 

definition of the 6Green ecosystem and validating use cases for the technologies and solutions developed by the 

project. This includes identifying the roles of different stakeholders, determining system and use cases 

requirements, and establishing key performance indicators for the identified use cases. 

Following, effort was allocated into the development of a set of enabling technologies to boost green elasticity 

(automatically, and rapidly provision, adapt, and de-provision network and (edge) computing resources/artefacts 

and hardware offload engines to improve energy efficiency) and edge agility (transparently move 

applications/services (or part of them) at run-time in different geographical areas of the edge-cloud continuum) 

in the deployment of services and applications over a 6G infrastructure. These enabling technologies include 

network connectivity management and traffic offloading mechanisms; cloud-native orchestration mechanisms 

considering approaches that take advantage of service-mesh techniques, as well as automation mechanisms 

based on infrastructure as a code, ZeroOps and continuous automation principles; power management 

mechanisms for the core, transport and access part of the continuum by considering serverless workloads; 

network slice lifecycle management and optimization techniques, including energy-aware network slice 

management in O-RAN and multi-provider settings, and green observability and profiling mechanisms. 

In the current document, the overall work towards the development of such enabling technologies is detailed. 

The document builds upon the results provided in the D3.2 that detailed the work in progress in the 

implementation of these technologies in M18 of the project. In all cases, the final status of the development of 

the enablers is provided. A mapping of the enabling technologies with their adoption toward the development of 

the various functions of the 6Green SBA is also detailed, while information for the developed software prototypes 

is made available in D2.4. 

Per enabling technology, the design of the mechanisms, the implementation status and evaluation results are 

provided. With this objective in mind, this document is organized as follows. Section 2 details the connectivity and 

traffic offloading enablers for managing data traffic to optimize performance, reduce congestion, and enhance 

the user experience across resources in the computing continuum. Section 3 details enablers that support 

orchestration actions for the management of cloud-native software, including enablers that support automation 

in the management of compute and network infrastructure in 5G/6G environments. Section 4 details power 

management and network slice lifecycle management techniques by considering serverless workloads. Section 5 

details data fusion, profiling and observability mechanisms. Section 6 provides a short mapping of the detailed 

enabling technologies with the 6Green Service-based Architecture (SBA), while Section 7 concludes the document. 
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 Connectivity and Traffic Offloading 

2.1 Traffic Offloading to Hardware Acceleration-Based UPF by Control Plane 

Service Exposure 

Traffic offloading in 5/6G networks refers to the process of redirecting data traffic to alternative pathways 

to optimize performance, reduce congestion, enhance the user experience, or change user plane technology. 

Traffic offloading is a crucial feature for allowing Green Elasticity, as the energy-aware usage of hardware 

accelerators cannot be applied unless traffic is redirected accordingly. 

During the 6Green activities, traffic offloading has been designed and implemented through the development 

of an evolved Network Exposure Function (NEF) prototype. Initially introduced in D2.2 and further detailed 

in this section, the prototype is tailored specifically for the 6Green SBA. It implements the traffic offloading 

mechanism in alignment with the 3GPP standard, particularly referencing TS 29.502 and TS 29.522 for the 

API specifications. The traffic offloading procedure leverages the URSP rule modification applied within the 

Service parameter provisioning service, as defined in D2.2. However, to better support the needs of 6Green, 

this service has been extended and slightly adapted to offer greater flexibility for slice offloading, by working 

on slice change for a set of UEs. 

Unlike the approach described in Section 2.1.1 of D2.2, the service in 6Green is no longer referred to as 

Nnef_ServiceParameter. Instead, it has been evolved and renamed as Nnef_SliceOffloading, to more 

accurately reflect its role of changing slice for specific UEs, within the 6Ggreen framework. In the next section, 

further detail about the implementation is provided. 

2.1.1 Slice Offloading Mechanism within the 5GC 

The legacy 3GPP standardized Service Parameter provisioning mechanism in 5GS enables external entities to 

supply service-specific parameters for single UE, facilitating its traffic steering. This is particularly effective 

when combined with (AF)-guided URSP rules, which allow for tailored routing of third-party application 

traffic. As described in the previous section, in the context of 6Green Project, this mechanism has been 

enhanced to introduce dynamic traffic steering capabilities. 

The innovation lies in the ability to incorporate new input parameters such as the originating network slice 

or DNN, allowing multiple UEs belonging to such domains (S-NSSAI or DNN) to be moved from a slice to 

another one. This is possible exploiting the availability of management APIs exposed by 5G Core Networks. 

In this activity we utilized the HPE Aruba Networking Private 5GC, which provides dedicated provisioning APIs 

allowing configuration changes (e.g., slice assignment for UE profiles). 

The developed Nnef_SliceOffloading service leverages some information coming from the CN and the actual 

request from the service consumer. 

Figure 2-1 illustrates the complete flowchart of the functional slice offloading procedure. The process 

requires two main inputs: information from the client request (i.e., destSliceList and target) and the 

provisioning data from the core network (i.e., profileList and subscriberList). The first step involves extracting 

the actual destination slice (destSlice), and related provisioning profile (destProfile) among the candidate ones 

included in destSliceList. The second step focuses on identifying the target UE or set of UEs. Based on the 

target type (GroupID, Slice, supi, gpsi, ipv4) included in the request, the algorithm selects the appropriate 

procedure to obtain the list of UEs (or a single UE) whose profiles need to be updated with the one including 

the destination slice. If a UE already has a profile that includes the destination slice, it is simply excluded from 

further processing. 
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Figure 2-1: Flowchart representation of the Slice offloading procedure. 
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2.1.2 Validation 

The slice offloading procedure was evaluated using a single User UE. The tested Core Network was based on 

the HPE Aruba Networking Private 5G Core (HPE 5GC). 

The UE's data was provisioned in the 5GC and initially assigned to Profile 1, associated with Slice 1-000001. 

A second profile (Profile 2) was configured and linked to Slice 1-000002. Each slice was mapped to a dedicated 

UPF, enabling traffic redirection upon slice switching. UERANSIM was used to emulate both the gNB and the 

UE, with the gNB configured to support both slices. 

Phase 1: UE registration and PDU session establishment to Slice 1 

As shown in Figure 2-2, the UE has been successfully connected to the initial Slice 1. A ping test was 

performed to check the connectivity and traffic. 

 

Figure 2-2: AMF information regarding UE connectivity status. 

Phase 2: Execution of NEF and tools for interfacing with the 5GC 

Figure 2-3 illustrates the execution of the software prototypes. On the right side, the NEF Python application, 

including the SliceOffloading service, is show. On the left, the ProxyAPI component is depicted, acting as an 

interface layer to communicate with the 5GC APIs. 

The NEF application is configured to interact with the ProxyAPI when API access is required. The ProxyAPI is 

already bound to the 5G Core, as indicated by the green status confirmation. 

 

Figure 2-3: Terminal output with execution logs of ProxyAPI (left) and NEF prototype (right). 
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Phase 3: Slice offloading request from client 

The functional test proceeded with the execution of the slice switch request using Postman. The request 

body (see Figure 2-4) includes the essential parameters required to trigger the slice transition: 

 GPSI, used to uniquely identify the target UE 

 Route slice information, specifying the combination of DNN and S-NSSAI values, which will be 

mapped to an available destination profile to be assigned to the UE. 

These parameters were processed by the NEF application to initiate the slice offload procedure for the 

selected UE. 

 

Figure 2-4: SliceOffload request body. 

 

Phase 4: SliceOffloading procedure and results 

Once the request was triggered, the SliceOffloading service executed the slice switching logic by interacting 

with the 5G Core through the ProxyAPI component. Upon successful assignment of Profile 2 to the UE, 

subsequent user traffic was redirected through the second UPF, as defined by the new slice configuration. 

Figure 2-5 shows the traffic handled by the two UPFs, visualized through Grafana plots. The transition of 

traffic from Slice 1 to Slice 2 is clearly observable, confirming the effectiveness of the offloading procedure. 

In order to activate the new slice configuration, the UE was detached and subsequently re-attached. This 

procedure is necessary to ensure that Profile 2 was correctly applied, enabling user traffic to be routed 

through the second UPF associated with Slice 2. 
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Figure 2-5: UPF 1 (above) and UPF 2 (below) user traffic. 

 

2.2 Connectivity Enablers in the Transport Network 

2.2.1 Architecture 

One of the key enabling technologies in the 6Green SBA is related to providing the connectivity between all 

the elements in the architecture. This means covering network connectivity aspects at cloud and in the 

transport network. The element responsible for managing the operation of the wide area networks that 

reach to the cloud is the Wide-Area Infrastructure Manager (WIM). 

The WIM oversees orchestrating and managing the transport network infrastructure. It acts as a central 

entity that controls and configures the connectivity between the different NFVI points of presence in the 

6Green SBA architecture. It sets and manages links, routes, and network resources required for the 

communication between endpoints in the 6Green SBA architecture. The WIM is a key element in managing 

the connectivity between sites, as it will provide the network slice connectivity at transport level to fulfil the 

needed requirements of the verticals. 

The WIM is involved in the slice realization workflow as follows: upon a slice request, the Network Slice 

Management Function (NSMF) interacts with the WIM in accordance with the 3GPP TS 28.541 

specification [1]. This interaction includes the identification of the network functions involved in delivering 

the end-to-end slice, as well as the specific slice requirements across the Core, Transport, and RAN domains. 

Based on this information, the WIM is responsible for establishing the required transport connectivity and 

for ensuring that the requested Service Level Objectives (SLOs) and Service Level Expectations (SLEs) are 

fulfilled within the transport domain. The WIM is complemented with a new element called Network Slice 

Controller (NSC). This new component, defined by IETF [2] is in charge of orchestrating the request, 

realization and lifecycle control of network slices at transport level. This component translates the abstract 

slice service requirements to concrete technologies and establishes required connectivity ensuring that 
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resources are allocated to the transport network slice as necessary. It will provide the connectivity in 

situations such as: 

 Extending the connectivity to the cloud and edge by deploying virtual routing and forwarding (VRF) 

instances. This interaction is complex because many components and resources in the SBA 

architecture are virtualized on bare metal servers in the cloud. Consequently, communication is 

abstracted, using virtualized rather than physical interfaces. This requires interaction with the Virtual 

Infrastructure Manager (VIM), which has the context and knowledge about the mapping of cloud 

components. 

 Providing connectivity and redirection of traffic among the different UPF deployed in the 6Green SBA 

architecture. 

 Providing connectivity in the transport domain upon slice requests involving Decarbonization Level 

Objectives (DLOs), defined in D4.1. This use case is further developed below. 

The NSC comprises two modules: the mapper and the realizer. The mapper processes the customer's request, 

contextualizing it within the IETF transport network. The realizer then translates this request into a practical 

implementation of the transport network, fulfilling the slicing request by interacting with the associated 

network controller within the network. 

The request received by the NSC originates from a 6G vertical seeking an end-to-end slice with specific 

requirements. This request is managed by the 6G end-to-end orchestrator, which configures the RAN and 

Core Network elements accordingly before passing the request to the NSC for processing. The NSC then feeds 

the relevant wide area network controllers to implement the network slice within the transport network. The 

architecture of this component is depicted in Figure 2-6. 

 

Figure 2-6: WIM Architecture. 
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The mapper handles client network slice requests and correlates them with existing slices. The workflow is 

as follows: when a slice request is received, the mapper translates it from 3GPP NRM [1] terms into the IETF 

NBI data model [3]. This involves identifying the service demarcation points (SDPs) that define the 

connectivity within the transport network. After identifying and mapping these parameters, the next step is 

to check the feasibility of implementing the slice request. 

To realize a slice, an existing network resource partition (NRP) that meets the specified slice requirements is 

needed, which may not always be available. Feasibility information is retrieved from an external module, 

beyond the scope of this definition, which provides a response regarding the feasibility of realizing the slice. 

If no suitable NRPs are available for instantiating the slice, the mapper requests the realizer to create a new 

NRP. This involves interacting with the wide-area network controllers responsible for the transport network 

managed by the NSC. This process is iterative until the mapper determines that the slice realization is feasible. 

The realizer module handles the actual implementation of each slice by interacting with specific wide-area 

network controllers. It receives requests from the mapper and decides on the technologies to use for 

instantiating the slice based on the selected NRP associated with the slice. 

2.2.2 Validation 

To evaluate the NSC, it is presented within the context of one of the previously introduced use cases, in which 

the NSC is responsible for providing a transport network slice that fulfills “green” requirements, also known 

as Decarbonization Level Agreements (DLAs)—namely, carbon emissions, energy consumption, energy 

efficiency, and the use of renewable energy sources. It is assumed that the slice request originates from the 

NSMF component in the form of an intent, following the 3GPP TS 28.541 specification [1]. 

Additionally, it is assumed that the WAN is managed by the TeraflowSDN controller [4], and that a separate 

component, referred to as the energy planner, is responsible for computing the most energy-efficient path 

that satisfies the slicing request requirements. 

For the purpose of the evaluation, the planner has been integrated into the NSC. However, as a similar 

component based on a Path Computation Element (PCE) with energy-aware capabilities has been developed 

within the 6Green Project by Ericsson, the NSC is fully compatible and capable of interfacing with this 

alternative solution. The architecture of this use case is presented in Figure 2-7. 

The overall workflow is resumed as follows: 

1. The NSMF, upon a slice request coming from a vertical, sends the slice intent for the NSC to handle in the 

transport domain a slice between endpoints A and B. 

2. The NSC translate the intent an IETF Slice Service Request [3] and sends it to the planner component. 

3. The energy planner component, retrieves energy metrics from Teraflow to perform calculations. 

4. With this information, the planner is able to obtain the optimal traffic path that meets the specified 

requirements in the intent. 

5. The planner sends this path to the realizer. 

6. The realizer sends a request to TeraflowSDN for creating a layer 2 VPN to realize the slice in the cloud 

continuum wide area. 

Firstly, as mentioned before, the process is triggered by the slice intent coming from the NSMF, following the 

3GPP TS 28.541 specification. This specification defines the endpoints of the request, which, for this use case, 

are A and B, and 4 main slice requirements, defined a Decarbonization Level Agreements (DLAs): 

 Energy Consumption, equivalent to the EC indicator, expressed in Joules or kWh [EC]. 

 Energy Efficiency, equivalent to the EE indicator, expressed in Watts per bits per second [EE]. 

 Carbon Emissions, expressed in grams of CO2 per kWh [CE]. 

 Usage of Renewable Energy, expressed as a rate [URE]. 
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Figure 2-7: Validation Architecture. 

 

For more detail about these parameters, see 6Green D4.1 [5]. An example of a slice service profile with DLAs is 

presented below. Note that no other SLOs (i.e. latency, throughput) are defined in this use case for simplicity. 

  "CNSliceSubnet": { 

    "networkSliceSubnetType": "CN_SLICESUBNET", 

    "SliceProfileList": [ 

      { 

        "sliceProfileId": "GREEN_SLICE", 

        "CNSliceSubnetProfile": { 

          "EnergyEfficiency": 1e-9, 

          "EnergyConsumption": 3000, 

          "RenewableEnergyUsage": 0.7, 

          "CarbonEmissions": 200 

        } 

      } 

    ] 

  } 
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Then, the mapper component in the NSC processes the request and translates it into an IETF Slice Service 

request, as shown below. 

{ 

  "ietf-network-slice-service:network-slice-services": { 

    "slo-sle-templates": { 

      "slo-sle-template": [ 

        { 

          "id": "green_template", 

          "description": "", 

          "slo-policy": { 

            "metric-bound": [ 

              { 

                "metric-type": "energy_consumption", 

                "metric-unit": "Joules", 

                "bound": 3000 

              }, 

              { 

                "metric-type": "energy_efficiency", 

                "metric-unit": "GigaWats/bps", 

                "bound": 1 

              }, 

              { 

                "metric-type": "carbon_emission", 

                "metric-unit": "grams of CO2 per kWh", 

                "bound": 200 

              }, 

              { 

                "metric-type": "renewable_energy_usage", 

                "metric-unit": "rate", 

                "bound": 0.7 

              } 

            ] 

          } 

.... 

 

After that, once the IETF request is generated, it is sent to the energy planner component. There are two 

possible deployment options for this component. 

 Operation as an external element: interaction with the energy-aware PCE developed in the context 

of the 6Green Project. This requires doing a request to /sss/v1/slice/compute endpoint API including 

as body a SliceInput object, which contains de following parameters: 

o requestId: sequential id of the request 

o clientName: the identifier of the client issuing the request 

o graph: the descriptor of a service graph, which includes the nodes in which the slice is 

deployed (e.g. A and B), the logical link between the nodes implementing the slice topology 

and the slice constraints, mapped to the DLOs described above. 
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The PCE answers with a SliceInfo object that includes, among other parameters, the path computed 

for the requested slice. 

 Rely on an internal planner integrated within the NSC: responsible for computing the most energy-

efficient path. 

For the purposes of the isolated evaluation of this use case, the internal planner embedded in the NSC has 

been chosen for evaluation. Therefore, the description from this point corresponds to the use of this internal 

planner. 

This way, the energy planner retrieves the energy metrics from the nodes in the topology by requesting 

TeraflowSDN to obtain these metrics from all nodes. These are: 

 Power consumed by each node in idle state, measured in Watts [Pidle] 

 Power consumed by components in nodes (e.g. transceivers, boards), measured in Watts [Pcomponents] 

 Energy efficiency of each node, measured in Watts per bit per second [ee] 

 Usage of renewable energy, measured as a rate. This data is specific to the plant where the node is 

located [ure] 

 Carbon emissions, measured in grams of CO2 per kWh. This data is specific to the plant where the 

node is located [ce] 

These values are obtained from the TFS Analytics component, which processes the instantaneous energy 

metrics obtained from nodes in the TFS Energy Collector component. See Figure 2-8 for TFS component 

architecture. Traffic through the nodes is assumed to be 100 gbps and the measurement time window is 

assumed to be one hour long. 

 

Figure 2-8: TFS Components Architecture. 
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The YANG model defining the energy metrics collected from nodes is depicted below: 

 

 

Taking into account the topology in the wide area network (Figure 2-9), the energy planner builds a weighted 

graph of the topology (Table 1). The weight of each node is named as Green Index [GI], measured in grams 

of CO2, and it defines how “Green” is each node in the topology. The planner computes the shortest path by 

applying a Dijstra Algorithm [6]. The formula that the planner uses to compute the nodes’ GI is depicted 

below: 

𝑮𝑰 =  (P𝑖𝑑𝑙𝑒 + P𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 +  𝑒𝑒 × 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 )  ×  
𝑡𝑖𝑚𝑒

1000 
× (1 − 𝑢𝑟𝑒) × 𝑐𝑒 

module: static-device-energy-tid 

  +-- container device 

     +-- leaf name                 string 

     +-- leaf typical-power        decimal64 (W) 

     +-- leaf maximum-traffic      decimal64 (Gbps) 

     +-- leaf max-power            decimal64 (W) 

     +-- leaf efficiency           decimal64 (W/fps) 

     +-- leaf nominal-power        decimal64 (W) 

     +-- leaf carbon-emissions        decimal64 (gCO2/kWh) 

     +-- leaf renewable-energy-usage decimal64 (rate) 

     +-- list power-supply 

        +-- key "name" 

        +-- leaf name              string 

        +-- leaf type              string 

        +-- leaf capacity          decimal64 (W) 

        +-- leaf typical-power     decimal64 (W) 

        +-- leaf nominal-power     decimal64 (W) 

     +-- list boards 

        +-- key "name" 

        +-- leaf name              string 

        +-- leaf type              string 

        +-- leaf capacity          decimal64 (W) 

        +-- leaf typical-power     decimal64 (W) 

        +-- leaf nominal-power     decimal64 (W) 

     +-- list components 

        +-- key "name" 

        +-- leaf name              string 

        +-- leaf type              string 

        +-- leaf capacity          decimal64 (W) 

        +-- leaf typical-power     decimal64 (W) 

        +-- leaf nominal-power     decimal64 (W) 

     +-- list transceivers 

        +-- key "name" 

        +-- leaf name              string 

        +-- leaf type              string 

        +-- leaf capacity          decimal64 (W) 

        +-- leaf typical-power     decimal64 (W) 

        +-- leaf nominal-power     decimal64 (W) 
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where Pidle, Pcomponents and ee*traffic is calculated based on the studies in [7]. 

 

Figure 2-9: Wide Area Network Topology. 

 
A B C D E F G 

GI 145 450 282 380 355 242 226 

Table 1: Weighted Adjacency Matrix. 

Subsequently, the green optimal path is computed as follows: 

𝑃𝑜𝑝𝑡  = min
𝑃∈𝒫(𝐴,𝐵)

∑ 𝐺𝐼(𝑣)

𝑣∈𝑃

 

being v a node of the set 

𝑷 =  {𝑨, 𝑩, 𝑪, 𝑫, 𝑬, 𝑭, 𝑮} 

with the following restrictions taking into account the slice requirements 

∑ 𝑒𝑒(𝑣)

𝑣∈𝑃

≤ 𝐸𝐸 

∀𝑣 ∈ 𝑃,  𝑢𝑟𝑒(𝑣) ≥ 𝑈𝑅𝐸 

∑ 𝑐𝑒(𝑣)

𝑣∈𝑃

≤ 𝐶𝐸 

∑ 𝑒𝑐(𝑣)

𝑣∈𝑃

≤ 𝐸𝐶 

 

After the request is sent to the planner, it responds with the following path between A and B (Figure 2-10). 
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Figure 2-10: Optimal Path calculated by the planner. 

 

Ultimately, the NSC generates a L2VPN TeraflowSDN service template between the specified endpoints over 

the optimal path defined by the energy planner and loads it into TeraflowSDN.  If we access TeraflowSDN, 

the service is deployed, as shown in Figure 2-11, with the constraints defined in the request. Furthermore, 

the specific configurations and the path for traffic is depicted in Figure 2-12. 

 

 

Figure 2-11. TFS L2 service created 

 

Figure 2-12: Configurations and path for service. 
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 Cloud Native Orchestration and Automated Network Infrastructure 
Management 

3.1 Deployment Aspects 

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in 6G 

In 6Green, Cloud-native technologies are essential for the efficient operation and optimization of our 

complex 5/6G systems, enabling end-to-end (E2E) management and automation services. It is known that 6G 

networks aim to enhance wireless network capabilities, delivering higher data rates, lower latency, and 

massive connectivity for diverse applications and services. This involves seamless management of network 

resources from end devices to core networks, utilizing advanced automation and AI techniques to optimize 

performance and efficiency. 

The AI/ML is leveraged for predictive analytics, network slicing management, and real-time decision-making, 

enhancing automation capabilities. Cloud-native capabilities, enabled through Service-Based Architecture 

(SBA), improve modularity and flexibility in network functions and services, based on the following factors: 

 Microservices Architecture: Facilitates independent development, deployment, and scaling of 

applications, enhancing agility and resilience. 

 Containerization: Encapsulates services within containers, ensuring consistency across 

environments and simplifying deployment and scaling. 

 Orchestration (Kubernetes): Manages the lifecycle of containers, automating deployment, scaling, 

and management of containerized applications. 

 DevOps Practices: Integrates development and operations teams to improve collaboration and 

accelerate service delivery. 

 Continuous Integration/Continuous Deployment (CI/CD): Automates the software delivery process, 

enabling frequent and reliable updates. 

 Service Mesh: Manages service-to-service communication, providing load balancing, service 

discovery, and secure connectivity. 

In 6Green, we deliver Cloud Native with Green Efficiency supported by Cloud Infrastructure, the Automation 

functions across RAN, Core, and Transport systems, streamlining processes and enhancing performance (6G 

RAN, 6G Core, and 6G-EDGE). The Dynamic optimization of the resource utilization is also implemented, 

ensuring consistent performance and energy efficiency, addressing key metrics such as Quality of Service 

(QoS). The general approach is to integrate NF Sets to ensure 6G Service-Based Interfaces (SBIs) 

interoperability and flexibility, enabling tailored solutions that meet specific needs and adapt to evolving 

technologies and demands. This delivers transformative, flexible consumption of Network Services, providing 

a scalable, flexible, and cost-effective way to manage network infrastructure. 

The principles rely on virtualized network functions (VNFs) that abstract traditional networking functionalities 

into software-based components, with Microservices architecture for modularity, scalability, and agility. The 

cloud native invokes the containerization and orchestration, which automate the lifecycle management of 

networking containers, ensuring scalability, resilience, and efficient resource utilization. API-Driven 

mechanisms are enabled for programmable and automated network management and provisioning. As 

implementation of dynamicity and scalability, 6Green allows network resources to scale up or down in 

response to changing demand, enabling efficient resource allocation, cost optimization, and improved 

performance of network services. The entire ecosystem is based on monitoring and observability 
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mechanisms, the tools which provide visibility into network performance, health, supporting the AI/ML data 

framework and further the prediction. 

6Green empowers the full 6G potential by integrating the sets of NFs and data analytics processes (NSDAF, 

NWDAF) through interoperable and APIs. This demonstrates the envisioned service-based architecture and 

orchestration that is applied for optimized applications placement and execution in 6G environments, 

automated cloud/edge-computing scaling of applications, dynamic creation and maintenance of optimized 

services, and automated network infra control of facilities through Infrastructure as Code. 6Green drives 

energy efficiency, agility, and innovation in operations. 

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in 

6G example: NSDAF Use Case. 

The NSDAF (Network Slice Data Analytics Function) module has been developed within the 6Green Project, 

focusing on energy consumption prediction for network slices. The NSDAF aims to infer KPIs, estimate energy 

consumption (and carbon footprint) of network slices, including edge-cloud resources hosting vertical 

applications, and analyze infrastructure data and network slice metrics. 

Data Flow and Architecture: 

The NSDAF collects data from various sources: 

 Redis DB/Channels: Receives power measurement data for containers and machines, identified by a 
unique slice_id. 

 Prometheus: Collects infrastructure data (CPU/RAM usage). 

 NWDAF/MDAF: Receives KPIs. 
 

 

Figure 3-1: NSDAF Interactions with other functions. 

 

The collected data is processed and stored in Redis, and a Flask web service exposes REST APIs for retrieving 

historical data and future predictions. AI/ML algorithms, specifically ARIMA, are used to forecast energy 

consumption. 
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Figure 3-2: NSDAF data processing. 

 

Specifically, the NSDAF utilizes the ARIMA model for time series energy forecasting, ARIMA models are 

temporal dependencies in the data, and the model components are: 

 AR (p): Models the relationship with past observations. 

 I (d): Applies differencing to make the data stationary. 

 MA (q): Models the relationship with past forecast errors. 

The ARIMA parameters (p, d, q) can be automatically tuned or set statically. 

As described in Figure 3-3, the NSDAF data flows is based on: 

 

 

Figure 3-3: NSDAF data flows. 

 

 NSDAF collect energy consumption data, aggregates it daily and leverages a prediction model to 

forecast future consumption. 

 Flask web service with two main endpoints - one for retrieving current historical data and one for 

obtaining future predictions. 

 Different ML models add flexibility to ensure the model can adapt to the generated data 

characteristics. 
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 ENIF/ VAO and other systems to easily obtain both historical insights and future predictions through 

simple REST API calls. 

 NSDAF lead to additional analyses - carbon footprint estimation - applying conversion factors to the 

energy data. 

 This makes the tool highly valuable for energy monitoring, forecasting, and environmental impact 

assessments. 

Both actual and predicted energy consumption power measurements are provided through APIs, data is 

processed to calculate the daily average energy consumption per slice_id. The Data is returned as a list of 

tuples: date string energy value, in float List of available slice_ids should be retrieved. ML algorithms build 

forecasts for consumption of components in network slice / level of load or resource usage on specific server 

and power consumption related to it. 

 

Figure 3-4: Actual and predicted energy consumption by NSDAF 

As described previously, in relation with 6Green (SBIs and APIs) and NFs interworking, the NSDAF delivers 

the following outputs: 

 GET /slice_ids Endpoint: returns a list with all slice ids available in order to return energy metrics per 

slice ids 

 POST /current_power_mircowatts Endpoint responds to POST requests by returning historical 

energy consumption data 

 POST /predicted_power_microwatts Endpoint forecasting future energy consumption 

 POST /cpu_usage Endpoint extracting CPU usage information (similar RAM/Disk/Net) 

An example of cloud native Orchestration and Automated Network Infrastructure Management for Green 

Efficiency, APIs implementation of NF level is provided in Figure 3-5. 
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Figure 3-5: NSDAF APIs 

 

The 6G networks bring the promise of network enhanced performance, with an increased focus on 

sustainability and energy efficiency. The optimizing energy consumption is possible within cloud-native 

environments, in this particular case for multi-tenant deployments. The tenant evaluation explores in this 

case the integration of tenants within a cloud-native architecture. At this stage, the tenant integration is 

focusing on the achievements results of Network Function Set 1 (NF SET 1) and the evaluation of energy-

related Service Level Indicators (SLIs) and Key Performance Indicators (KPIs). 

The energy analytics is treated as a first-class, within the multi-tenant context concern, as tenants are isolated 

at runtime (via Kubernetes namespaces/pods) and the relevant resource (containers, VMs, servers) are 

labelled with a tenant identifier (slice_id). This labeling lets NSDAF correlate infrastructure metrics (CPU, 

RAM, disk, network) with power data on a per-tenant basis, enabling accurate attribution of energy use and 

impact. It defines and reports tenant-specific energy KPIs (consumption per unit, reduction, efficiency) and 

supports tenant-level reports and dashboards. With respect to this, forecasts are produced for each tenant 

(rather than only at slice/system level), and daily aggregation is aligned to tenant identifiers so that both 

historical and predicted series reflect tenant behavior. The same REST interfaces described in Section 3.1 are 

reused, but the semantics are explicitly per tenant (e.g., /slice_ids enumerate active tenant IDs). An 

additional topic is the closed-loop, tenant-aware orchestration, as the NSDAF integrates with ENIF and the 

Virtualized Automation Orchestrator (VAO), so energy insights can trigger tenant actions (for example, pre-

emptive scaling or resource rightsizing) with policy control at tenant granularity. In a larger context, the 

operators can set energy-aware policies per tenant (e.g., caps, throttles, or prioritization) to support 

sustainability targets without imposing uniform rules across all workloads. 

3.2 Service Mesh Technologies 

With the rising popularity of cloud-native applications, service mesh architectures have emerged to enable 

advanced functionalities within PaaS environments. Service meshes rely on sidecars, that are 

“accompanying” containers, in particular they allow interacting with other containers by communicating with 

their respective sidecars. In a nutshell, their main features are i) connectivity, including service discovery, ii) 

monitoring, through tools such as Prometheus, and iii) security, with ad-hoc policies to manage accesses. 

In the context of 6Green, the service mesh paradigm has been investigated to enable the project’s 

innovations on Kubernetes clusters, with special focus on Edge Agility in this phase of the project. Edge Agility 

is meant to provide smart, fast, and automated horizontal scalability to vertical application and related slices 

across the 5/6G edge-cloud continuum, for example in reaction to a handover event or to move the workload 

where more convenient (e.g., to consolidate vApps and slices or to exploit the presence of renewable 

sources). In this respect, the first step of interest is the so-called “scale to zero”, that is switching off the pods 
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for a certain non-used service for zeroing its, and to quickly resume the operating capacity when needed. 

One of the most intuitive ideas is that we can try to pause what is not used, like when we turn off the light 

we don't need it. 

The main issues to be investigated are the following: 

 What happens when some traffic arrives at a service that has been scaled to zero? 

 How much time is needed to resume the service? (Scale to zero) 

A partial solution to both problems could be the traffic steering to another support cluster/zone where the 

service is online, but this requires having a multi cluster environment. In this case we would have all the time 

we need for the service to be resumed, but a compromise on the QoS may have to be made (more latency 

for the original zone, and more load on the support zone). When the service in the original zone comes up 

again, we can steer the traffic back where it should go. A bigger problem arises when dealing with continuous 

connections, is it possible to change the destination of the traffic without a service drop? It could be possible, 

but this case has to be managed by the application/service. 

Another interesting question is when do we need to restore the service? For the sake of simplicity, let's limit 

ourselves to the HTTP case. If a request arrives at the service, is it a sufficient reason to restart the service? 

For essentials services we could think of delegating the answer to a support cluster (see traffic steering) while, 

for not essential services, it may depend on the service provider policy. In any case, the operation of turning 

on/off the service multiple time could lead to power consumptions that are higher than the case where the 

service is always online. This is why, in some cases, we could think not to respond to a request. 

To manage scale to zero operations in this context, the Kubernetes scaling mechanism is not enough since 

domain-specific knowledge may be required. To solve this problem, additional tools called Operators can be 

installed on the cluster. Operators are software extensions to Kubernetes that manage applications and their 

components using custom resources that allow to define application-specific controllers for complex 

applications. Controllers are the Kubernetes components that manage the resources lifecycle to bring the 

cluster state closer to the desired one. 

In the context of 6Green, the operators that we are considering are Knative and KEDA. Knative1 provides a 

common toolkit and API framework for serverless workloads, to support the deployment, running, and 

management of serverless, cloud-native applications to Kubernetes, but it does not allow to be integrated 

on an already running cluster. KEDA2 is a Kubernetes-based Event Driven Autoscaler3. It allows the scaling of 

any container in Kubernetes based on various metrics like the number of events needing to be processed. It 

is lightweight and can work with standard K8s components such as Horizontal Pod Autoscaler and can extend 

functionality without overwriting or duplication. While it natively offers the needed scaling feature, it can 

only operate on a per-cluster basis, which would prevent us from scaling in the continuum. When a scale to 

zero operation is performed on essential services, the traffic needs to be redirected to a running instance of 

the service in another cluster to prevent service interruption. For this purpose, a service mesh should be 

installed on the cluster. In 6Green, we decided to rely on Istio as a service mesh, that is described in the next 

subsection, followed by a set of evaluation results. 

Alongside the traditional Kubernetes networking we have decided to use Istio. This enables us to extend 

Kubernetes establishing a programmable, application-aware networking using the Istio provided Envoy 

                                                           
1 https://www.redhat.com/en/topics/microservices/what-is-knative 
2 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics 
3 https://dev.to/sarony11/hpa-vs-keda-in-kubernetes-the-autoscaling-guide-to-know-when-and-where-to-use-them-m96 

https://www.redhat.com/en/topics/microservices/what-is-knative
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics
https://dev.to/sarony11/hpa-vs-keda-in-kubernetes-the-autoscaling-guide-to-know-when-and-where-to-use-them-m96
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service proxy. Beyond this, it allows us to use Monitoring data generated by the sidecars (Envoy proxy) to 

energy efficiency scopes (as explained later in the document). 

We documented how Istio is working to understand when it is possible to install it, in particular if it possible 

to perform a Day-2 installation on a cluster with services that are already running on it. 

First of all, the installation is performed using the dedicated Istioctl CLI tool or through the Helm chart. After 

this task, the injection of the sidecar must be enabled for every namespace that is needed. Now, if the cluster 

is brand new, we do not need to worry about anything, Istio will be working on deployed services. Otherwise, 

if some services are already running on the cluster, we will need to change these resources. To understand why, 

Istio uses Admission Controllers to intercept APIs calls and in this process, it injects sidecars into running Pods: 

 Prior to persistence of Resources 

 After the API request has been authenticated and authorized 

Scale-to-zero has been implemented by means of a UPF prototype, based on the Berkeley Extensible 

Software Switch (BESS4): when the UPF receives a packet directed towards the application deployed on the 

“scaled-to-zero” pod, it sends an alert to the pod asking it to scale back up and, in the meantime, it stores 

the incoming to give it time to get back up without packet losses. Although the mechanism itself is 

straightforward, on the other hand the operation can introduce additional consumptions if the scaling 

operation happens too often. The following results allow for an evaluation of such consumption for a better 

understanding of how to best apply the mechanism. 

3.2.1 Overhead of Container Scaling Operations 

Studies have been done to see the advantages in scaling pods to zero when needed by observing the CPU 

power consumption. These data are relevant in understanding when it is applicable to horizontally scale 

vertical application and related slices across the edge-cloud continuum. In particular, several measurements 

and results that have been performed on the CPU power consumption ascribable to the pod deployed on the 

Kubernetes Cluster when it scales from zero to one and vice versa with different timings using Intel “Running 

Average Power Limit” (RAPL)5[8]. 

                                                           
4 https://span.cs.berkeley.edu/bess.html  
5 Intel RAPL https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/running-average-power-limit-energy-reporting.html 

https://span.cs.berkeley.edu/bess.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
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3.2.1.1 Setup 

 

Figure 3-6: Traffic generation and scaling the pod. 

 

 

Figure 3-7: Setup used for the tests. 

 

To simulate a server, a NUC PC has been used. This PC was developed by Intel, and it can be used in both 

gaming and commercial fields. The mounted processor is an Intel(R) Core (TM) i7-6770HQ CPU @ 2.60GHz. 

On top of it, a Kubernetes cluster has been set up on bare metal, with a single node running both as master 

and worker, as this configuration better suits the NUC architecture. The operating system installed on it is 

Ubuntu 24.04.1 LTS. 
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On the other side, to simulate the client, a virtual machine has been instanced using OpenStack6 , which is an 

open source set of software components that is used for cloud IaaS, facilitating the control large pools of 

networking, the computation and storage of resources and allows to set up the test environment. 

In order to assess the CPU power consumption ascribable to the scaling pod, a Python application called 

Power Collector7  has been used in the NUC. This application reads the RAPL power counter contained in the 

Linux kernel throughout the duration of a test every 1,55 seconds, and then saves them. The pod is deployed 

on the NUC using a Rust application8  and requires a NodePort, a Kubernetes service that exposes the 

application onto an external IP address to allow the cluster to communicate with the external world. 

On the client side, a self-developed Rust application called Packet Generator9 that generates continuous 

traffic to be sent to the pod deployed on the server by opening a TCP/UDP socket. This application sends a 

packet at 𝑡0 to the pod deployed on the server. If the pod is active, it elaborates the packet receive while 

doing some background work and sends an acknowledgement to the client. This goes on until, at time 𝑡𝑖, a 

“scale-to-zero” signal is requested by the client. The server scales the pod to zero by deleting the deployment. 

All packets sent by the client from here are not elaborated by the server, so they reach a timeout and are 

then dropped. This mechanism works as a sort of ping, which is used to monitor if the pod is active or not. 

This goes on until at time 𝑡𝑗 a “scale-to-one” signal is sent by the client. The server reactivates the pod by 

deploying a new Kubernetes deployment. These operations go on until the end of the test time. This 

mechanism can be seen in Figure 3-6. 

The Packet Generator application allows the selection of cores to be used in the server during the test, the 

kind of background operations it does whether a packet is received or not, and the percentage amount of 

background work. It also allows to choose how the packets are handled by the server, such as the packet 

elaboration time and the packet elaboration work type, as well as the maximum response time a sent packet 

and whether the traffic is TCP/UDP. Furthermore, it permits to set the test duration and when a pod should 

be scaled to zero or to one. 

The setup adopted for the test is shown in Figure 3-7. The Virtual Machine is exposed to the internal network 

by OpenStack by assigning a floating IP to the instance. The IP address assigned to the virtual instance is 

192.168.254.166. As for the NUC, the IP assigned to it is 192.168.17.149. As for the Packet Generator, the 

type of operation used by the background work and the packet elaboration type is the calculation of prime 

numbers. The number of cores used are 8, which is the total amount of cores the NUC has. The elaboration 

time of a packet is 1500ms and the max response time of a sent package is 1550ms. 

The packets are sent every 1.5 seconds, and test have been conducted by scaling the pod every 15 seconds, 

3 minutes, 5 minutes and 12 minutes, and they are compared to when the pod is active with traffic received, 

the pod is active while in idle and the pod active with traffic dropped. Each test runs for one hour and a few 

minutes and is repeated for each event. 

3.2.1.2 Results Evaluation 

As mentioned before, results will focus on power consumption. Figure 3-8 to Figure 3-14 show the power 
consumption of the server that has been retrieved by the RAPL power counter. Figure 3-8 shows the power 
consumption of the pod that stays active and in idle state, without any traffic being received. Figure 3-9 to 
Figure 3-12 show the power consumption when the pod scales with different frequencies, and Figure 3-13 

                                                           
6 Openstack https://www.openstack.org/ 
7 Power Collector https://github.com/nikyjane15/Power_Collector 
8 Rust https://www.rust-lang.org/ 
9 Packet Generator https://github.com/s2n-cnit/pktgen 

https://www.openstack.org/
https://github.com/nikyjane15/Power_Collector
https://www.rust-lang.org/
https://github.com/s2n-cnit/pktgen
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shows the pod always active and receiving traffic, while Figure 3-14 shows the active pod receiving traffic 
and at certain point it does not receive it anymore. 

Focusing on the plots, Figure 3-9 to Figure 3-12, when the pods scales from zero to one there is a spike of 
power, which is due to the “waking up” of a new pod upon a scaling up request. This power spike is the same 
height in all the plots. This is different from the case shown in Figure 3-8 and Figure 3-13; in these, the power 
consumption is flatter. Deploying a new pod means allocating resources and consuming energy in order for 
it to do its task. After the spike, the power returns to regime until the next scaling request. 

Moreover, when observing Figure 3-14, it can be seen that at 00:30:22 the pod doesn’t receive any traffic 
from the client, and the power consumption from that point forward is 8W, the same mean consumption as 
Figure 3-8. Comparing it with Figure 3-9 to Figure 3-12, it can be observed that, when the “scale-to-zero” 
operation is requested, the power consumption while the pod is down is 4W. This means that scaling pods 
down halves the amount of power consumption with respect to leaving the pod up, independently of 
whether traffic is transmitted or not. 

Another thing worth mentioning is that, by comparing the plots, the power consumption seems to be less 
when the pod is active all the time and not receiving traffic, and not when it gets scaled to zero. But when 
the pod is active and receives a continuous stream of traffic, the power consumption doubles with respect 
to scaling. This can be shown clearly in Table 2 by looking at the mean value in each case. The mean power 
consumption of the active pod when it just exists is half with respect to scaling and a third of when the pod 
is active and receiving traffic. Furthermore, the power consumption is the same independently of the total 
amount of times the pods scales. Looking at the standard deviation, it is worth mentioning that it is much 
larger when the scaling is happening due to spikes given by the “wakeups” of the pod. 

These results show a supposed advantage in scaling the pod to zero to decrease the overall power 
consumption, but this also depends on the application deployed on the pod. If an application has more 
overhead when starting up, this could cause a long burst of power consumption before going to regime 
instead of a spike of power, which means higher consumption. 

Table 2: Mean and standard deviation of the power in watts when scaling with different frequencies. 

 Mean Std 

Pod active in idle 8 1.28 

15 seconds scaling 14 9.79 

3 minute scaling 13 9.79 

5 minute scaling 14 10.94 

12 minute scaling 14 9.82 

Pod active with traffic 23 0.1 

Pod active with traffic stopped 16 7.65 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  37 of 158 

D2.3 – The 6Green Enabling Technologies  

 

Figure 3-8: Power consumption when the pod does not receive any traffic. 

 

Figure 3-9: Power Consumption when the pod scales every 15 seconds. 
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Figure 3-10: Power Consumption when the pod scales every 3 minutes. 

 

Figure 3-11: Power Consumption when the pod scales every 5 minutes. 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  39 of 158 

D2.3 – The 6Green Enabling Technologies  

 

Figure 3-12: Power Consumption when the pod scales every 12 minutes. 

 

Figure 3-13: Power Consumption when the pod is active and receives traffic. 
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Figure 3-14: Power consumption when the pod is active, and traffic is stopped. 

 

3.3 Infrastructure as a Code Mechanisms Based on the MetalCL 

The MetalCL is devoted to the management and terraforming of the VIMs, operating systems and bare-metal 

resources available in a testbed. In the presence of this service, physical servers and hardware network 

equipment, as well as their operating systems, can be dynamically managed on demand. The conceptual 

framework behind the MetalCL is grounded in the paradigm of Infrastructure as a Code (IaC). In essence, the 

MetalCL serves as a versatile tool, enabling the composition of code to define, deploy, update, and destroy 

infrastructure elements essential for the realization of diverse projects. One of the prominent facets of the 

MetalCL’s application spectrum is its utilization for the orchestration of 5Gbeyond-green initiatives. In this 

context, the MetalCL plays a pivotal role as an actuator, facilitating the dynamic alteration of states within 

the domain of bare-metal equipment. Furthermore, the MetalCL serves as a dedicated service for managing 

and terraforming bare-metal resources, encompassing physical servers and hardware network equipment to 

create IaaS and PaaS environments tailored to the specific requirements of 6G and 5G-beyond platforms. 

This capability includes overseeing operating systems on servers, configurations in network equipment, and 

installing complex distributed applications like Open-Stack and Kubernetes. 

The MetalCL operates as an advanced infrastructure management system designed to optimize a wide range 

of hardware and software resources. Within its operational framework, the MetalCL is structured around 

several key components, each fulfilling distinct roles vital for cohesive resource management and allocation. 

These pivotal components include delineated ’Zones,’ which serve as segregated collections of hardware and 

software resources with specific functionalities. These zones can be characterized by unique levels of 

programmability, defining not only a diverse spectrum of resources but also the level of accessibility and 

programmability that can be performed on them: functionality within each zone spans from fundamental 
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access to comprehensive management tasks, encompassing server selection, installation, and 

reconfiguration of instances. 

Zones within MetalCL are tactfully implemented as encapsulated ”plugins”; this architectural approach is 

pivotal in maintaining system modularity. By employing plugins, the MetalCL obviates the need for recurrent 

service recompilation and prevents the inadvertent introduction of unwarranted dependencies, thereby ensuring 

a coherent and adaptable system framework. The linkage between individual OpenStack or Kubernetes instances 

and projects is exclusive, establishing clear delineation in resource allocation and management. 

The MetalCL interfaces with three external components: the MAAS server the Ansible engine and the NetCL. 

The Metal-as-a-Service (MaaS) server, an open source project developed by Canonical10, revolutionizes the 

management of individual bare-metal servers, bringing them in line with the administration of virtual 

machines within a cloud environment. This service enables the discovery, commissioning, deployment, and 

dynamic reconfiguration of extensive fleets of physical servers. With requirements as minimal as an IPMI-like 

system11 and support for network boot operations through PXE standards [9], MaaS catalogues and manages 

these servers, offering functionalities akin to those in virtualized environments. Operating within MetalCL, 

MaaS utilizes its REST APIs to initiate bare-metal level changes, controlling power states and installing (on 

demand and as-a-Service) almost any operating system by properly configuring and administering the 

network(s) (mainly at the IP layer, while layer 2 interconnectivity and additional functions like gateways and 

firewalls are provided by the NetCL service). MaaS exposes a complete set of REST APIs, which are consumed 

by the MetalCL to trigger any changes at the bare-metal level. 

Some key advantages of MaaS encompass automated remote operating system deployment, centralized 

monitoring, rapid provisioning, and tear down of bare-metal server configurations. It proves beneficial for 

environments necessitating frequent rearrangements of physical hardware, offering cloud-like agility to bare-

metal setups. MaaS demonstrates its versatility across dynamic bare-metal infrastructure scenarios by 

treating physical servers as virtual resources. This approach infuses cloud-like flexibility into bare metal 

environments, efficiently handling deployment, modification, and reconfiguration of bare-metal setups. 

Integrating MaaS within MetalCL ensures adaptability and responsiveness to the evolving demands of 

infrastructure, making it invaluable for applications requiring frequent changes in server topology. 

The Ansible Engine12 plays a pivotal role within the MetalCL by driving any software installation, application and 

OS reconfigurations over the bare-metal servers installed by MaaS. This engine is the one that provides the 

MetalCL with the capability of installing software dependencies and installing and managing, in a zero-touch 

fashion, complex distributed software like OpenStack or Kubernetes over one or more servers, overseeing 

complex applications by assigning specific server roles, such as the number of controller or compute nodes. The 

zero-touch deployment model facilitated by Ansible ensures seamless and automated execution of tasks, 

significantly enhancing the efficiency and reliability of server-related operations within the MetalCL framework. 

The NetCL serves as a key element for automated discovery, employing the LLDP protocol to uncover the 

physical topology. This capability allows it to access the command line or REST interfaces of networking 

devices, e.g., interconnection layer-2 managed switches (with VLAN or OpenFlow support), routers 

(optionally with the support of virtual routing functions) and firewalls, to enable the configuration of overlay 

networks. These networks not only facilitate the seamless hosting of complex platforms like OpenStack and 

Kubernetes but also actively manage interconnectivity among servers. 

                                                           
10 https://maas.io/ 
11 https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html 
12 https://www.ansible.com/ 

https://maas.io/
https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.ansible.com/
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Additionally, the NetCL assumes a pivotal role in network orchestration: it facilitates the automatic discovery 

of the physical topology and takes charge of interconnecting layer-2 switches, routers, and firewalls to 

establish overlay networks. This functionality is crucial in ensuring the efficiency of connectivity among 

servers, thereby significantly enhancing the robustness and stability of the entire network infrastructure. 

3.3.1 Power Management Capabilities 

At the heart of the MetalCL's resource management capabilities lie two fundamental pillars: the dynamic 

adjustment of CPU frequencies and the nuanced manipulation of C-States. 

The importance of CPU frequencies lies in their direct effect on computational performance. Higher 

frequencies generally mean faster computations, making this parameter essential for a range of tasks. 

MetalCL's dynamic frequency adjustment allows users to tailor system performance based on their 

application's needs, promoting efficiency and responsiveness. MetalCL's dynamic CPU frequency 

management lets users balance the need for quick computations with the goal of minimizing energy use. This 

adaptability is valuable when computational requirements vary. Users can adjust the system's performance 

in real-time, responding to changes in workload intensity. MetalCL's flexibility in handling different workloads 

provides a practical solution for optimizing performance and energy efficiency in dynamic computing 

environments. In scenarios like cloud computing, where workloads can change unexpectedly, the ability to 

adjust CPU frequencies dynamically is crucial for resource allocation and cost-effectiveness. 

C-States, denoting CPU power states, encapsulate a spectrum of power consumption and performance levels 

accessible to a CPU. MetalCL, empowers users with the unique capability to finely manipulate C-States. This granular 

control enables dynamic adjustments to individual CPU power states, responding adeptly to the ever-changing 

demands of diverse workloads. 

MetalCL's prowess extends beyond CPU frequency adjustment, as it seamlessly integrates the manipulation of C-

States. C-States, ranging from C0 to Cn, represent a hierarchy where C0 signifies the highest-performance state, and 

ascending numbers (C1, C2, etc.) denote progressively deeper levels of power-saving states. This hierarchical 

structure allows CPUs to transition intelligently between states, aligning power consumption with the immediate 

processing requirements. The dynamic nature of C-State manipulation in MetalCL introduces a new dimension to 

power management, offering users a versatile tool to optimize energy efficiency and enhance hardware longevity. 

The MetalCL has been recently extended with an API for retrieving information about the underlying hardware 

configuration. This architecture information encompasses critical details such as CPU model, number of cores 

and threads, cache sizes, CPU vulnerabilities, and more. Understanding these aspects of the CPU architecture 

aids in optimizing system performance, identifying potential vulnerabilities, and making informed decisions 

regarding hardware provisioning and management. In Figure 3-15, an illustrative example of the output is 

provided, while Figure 3-16 depicts a sample of representation of the available governors for a server. 

The API facilitates the retrieval of the real time status of governors for each CPU core. This feature allows users 

to monitor and adjust the governor settings dynamically, ensuring efficient resource utilization. Figure 3-17 

illustrates a sample of the status of governors for individual CPU cores. Additionally, the API offers access to the 

current frequency of each CPU core, enabling real-time monitoring of processor performance. This information 

allows users to analyze CPU usage patterns and make informed decisions regarding workload distribution and 

system optimization. An example showcasing the current frequency of CPU cores can be seen in Figure 3-18. 

Two other relevant features are the monitoring of the available and current C-states for each CPU core, 

shown in Figure 3-19 and Figure 3-20, respectively. The former, along with detailed information about each 

state's characteristics and capabilities, facilitates fine-grained power management strategies., while the 

latter provides insights into power-saving behaviours and system efficiency. 
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Finally, users can utilize the API to obtain the percentage of time each CPU core has spent in a specific state, 

both for a specified interval or over the entire duration of system operation. This data allows for 

comprehensive analysis of CPU usage patterns and power consumption trends. Figure 3-21 presents an 

example of the percentage distribution of CPU core states. 

 

 

Figure 3-15: Example output showcasing CPU architecture information retrieved through the API. 

 

 

Figure 3-16: Representation of the available governors for CPUs retrieved using the API. 
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Figure 3-17: Monitoring of the status of governors for each CPU core through the API. 

 

 

 

Figure 3-18: Illustration of the current frequency of each CPU core retrieved through the API. 
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Figure 3-19: Visualization of the available C-states for each CPU core retrieved through the API. 

 

 

Figure 3-20: Real-time monitoring of the status of C-states for each CPU core through the API. 
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Figure 3-21: Example representation of the percentage distribution of CPU core states retrieved through the API. 

 

The API also offers comprehensive capabilities for monitoring power consumption, leveraging three distinct methods 

to ensure accuracy and reliability in data acquisition. The RAPL (Running Average Power Limit) method provides 

insights into power consumption at the processor level, offering detailed information about energy usage patterns 

and fluctuations, as illustrated in Figure 3-22. Additionally, the API utilizes the IPMI (Intelligent Platform Management 

Interface) protocol to access power-related data from system hardware components, enhancing visibility into power 

consumption across various subsystems, as demonstrated in Figure 3-23. Furthermore, sensor-based measurements 

enable real-time monitoring of power usage at the hardware level, capturing fine-grained details about energy 

consumption in different system components, as depicted in Figure 3-24. 

By employing multiple data collection methods, the API enhances the robustness and accuracy of power 

consumption monitoring, facilitating comprehensive analysis and optimization of energy usage. This multifaceted 

approach enables users to gain deeper insights into power consumption dynamics, identify inefficiencies, and 

implement targeted strategies to enhance energy efficiency and sustainability in computing environments. 
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Figure 3-22: Power consumption monitoring using the RAPL method. 

 

Figure 3-23: Power consumption monitoring utilizing the IPMI protocol. 

 

Figure 3-24: Real-time monitoring of power usage through sensor-based measurements. 

 

Enhancing user experience, a GUI is provided to offer a user-friendly interface for comprehensive system 

monitoring. Users can conveniently access a summary of the current governor assigned to each CPU core, 

providing insights into power management strategies and workload distribution. Additionally, real-time updates 

on the current frequency of CPU cores allow users to track performance fluctuations and optimize system 

resources effectively. Furthermore, the GUI provides visibility into the status of various available C-states, 

empowering users to fine-tune power-saving configurations for enhanced energy efficiency. Figure 3-25 offers a 

visual representation of these monitoring capabilities, showcasing the intuitive interface provided by the GUI. 
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Figure 3-25: Visual representation of the provided GUI. 

 

3.3.2 Results 

The aim of this testing is to analyze the power consumption of a server under different configurations of c-

states and governors. Specifically, we want to understand how altering these settings impacts power usage 

both under normal CPU loads and under maximum CPU stress. 

In the initial configuration, the C-state is set to State0, and the governor is set to Performance. The system is 

operating under normal load conditions. Upon changing the governor to Powersave, there is a noticeable 

decrease in power consumption from 371.24 W to 249.18 W, as depicted in Figure 3-26. This demonstrates 

the impact of governor settings on power usage when the system is not fully loaded. 

 

Figure 3-26: Comparison of power consumption before and after changing the governor to Powersave with normal 
system load. 
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With the governor set to Powersave and increasing the system load to 100%, the power consumption rises 
to 263.45 W, as shown in Figure 3-27. This illustrates that even with a Powersave governor, power 
consumption increases under full load conditions. 

 

Figure 3-27: Power consumption with the Powersave governor under full system load, illustrating increased power 
usage compared to the previous configuration. 

After changing the governor back to Performance while maintaining the 100% system load, the power 

consumption further increases to 407.23 W, as seen in Figure 3-28. This emphasizes the role of the governor 

in influencing power consumption under varying workloads. 

 

Figure 3-28: Power consumption spikes after reverting the governor back to Performance while maintaining full system 
load. 

When the C-state is changed to All while the system is not under full load, the power consumption decreases 

significantly to 177.43 W, as depicted in Figure 3-29. Enabling all C-states allows for better power 

management when the system is idle. 
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Figure 3-29: Significant decrease in power consumption with all C-states enabled under normal system load conditions. 

Even with all C-states enabled, when the system load is increased to 100%, the power consumption rises 

notably to 407.11 W, as shown in Figure 3-30. This highlights that while C-states can help in reducing power 

consumption during idle states, they may not have a significant impact when the system is under heavy load. 

 

Figure 3-30: Power consumption increases notably under full system load even with all C-states enabled. 

With the governor set to Powersave and the system not fully loaded with all C-states enabled, the power 

consumption is 172.13 W, as indicated in Figure 3-31. This likely demonstrates a lower power usage 

compared to the Performance governor under similar conditions. 
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Figure 3-31: Lower power usage observed with the Powersave governor and all C-states enabled under normal load 
conditions. 

Under 100% system load with the governor set to Powersave and all C-states enabled, the power 

consumption is 261.25 W, as shown in Figure 3-32. This figure illustrates the power consumption increase 

compared to the previous figure due to the higher workload. But as the governor is set to Powersave, we see 

that this increase is not as much as the time that the governor is set to Performance. 

 

Figure 3-32: Increased power consumption under full system load with the Powersave governor and all C-states 
enabled compared to the previous configuration. 

When the C-state is changed to only State2 while the governor remains as Powersave, the power 

consumption reaches to 193.72 W, as observed in Figure 3-33. This highlights the influence of specific C-state 

configurations on power efficiency. 
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Figure 3-33: Power consumption with specific C-state configuration (only State2) and Powersave governor under 
normal load conditions. 

By setting the governor to Ondemand while C-states are set to all and with the system load at 100%, the 

power consumption increases to 406.03 W, as shown in Figure 3-34. This demonstrates that the Ondemand 

governor can reach maximum power consumption levels when the workload is at 100%, similar to the 

Performance governor configuration. 

 
Figure 3-34: Power Consumption with Ondemand Governor and All C-states Enabled Under Full System Load. 

 

3.4 ZeroOps and Continuous Automation Based on the NFV Convergence Layer 

(NFVCL) 

The NFVCL is a network-oriented meta-orchestrator, specifically designed for zeroOps and continuous 

automation. It can create, deploy and manage the lifecycle of different network ecosystems by consistently 

coordinating multiple artefacts at any programmability levels (from physical devices to cloud-native 

microservices). 
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In detail, a network ecosystem like the one in Figure 3-35 is meant to be a complete functional network 

environment, such as a 5G system, an overlay system for network cybersecurity or a simple application service 

mesh. For their nature, these environments are realized through heterogeneous Network Functions (xNFs – 

i.e., Physical NF, Virtual NF and cloud-native Kubernetes NF), which are usually to be realized over highly 

distributed infrastructures. More specifically, every network ecosystem can be thought of as a graph 𝒢 =

〈𝒱 ∪ 𝒩, ℰ〉, where the vertexes are composed of the sets of xNFs instances 𝒱 and the sets of interconnection 

networks 𝒩, while the ℰ represents the interconnectivity edges between xNFs and networks. 

As defined in the ETSI NFV standard, xNFs are managed by the NFVO through end-to-end Network Service 

Instances. Every Network Service can include one or more xNF instances, and it is meant to be deployed over 

a single geographical facility, which may correspond to a computing facility and/or a physical device (e.g., a 

gNodeB, an O-RAN Radio Unit, a P4 switch, etc.). 

The graph 𝒢 of a network ecosystem, represented in Figure 3-36, is meant to be annotated with “anchors” 

that represent the placing/binding of the ecosystem endpoints over the physical infrastructure topology. An 

anchor can be associated to a network in the 𝒩 set, or to a PNF to be instantiated over a physical device. 

Moreover, Figure 3-35 and Figure 3-36 highlight the support for having different levels of virtualization which 

can be exploited by the NSs. Platform as a Service (PaaS) allows the deployment of KNFs, Infrastructure as a 

Service (IaaS) of VNFs and finally Metal as a Service (MaaS) allows to bypass virtualization and to deploy 

services directly on the Hardware (e.g., a Kubernetes bare-metal cluster). 

 

Figure 3-35: A Network ecosystem instance composed of 5 Network Services made up of a variable number of xNFs. 

 

Figure 3-36: The graph of a network ecosystem with anchor points highlighting the link between the xNFs and the 
physical infrastructure. 

Network Ecosystem Instance

Network Service Instance

Network Service Instance

Network Service Instance

Network Service Instance

Network Service Instance
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3.4.1 The Network Ecosystem 

The NFVCL has been built over a modular and flexible architecture that can be easily extended to support 

new xNF and ecosystems. At the foundations of this architecture, the metamodel in Figure 3-37 has been 

specifically designed to augment extensibility and flexibility and to drive clear interaction patterns among the 

different internal modules during LCM operations. 

Still with reference to Figure 3-37, every ecosystem instance is built through a Blueprint, which on its turn 

falls into a Category. The Blueprint Category corresponds to the high-level network ecosystem function type, 

like a 5G system, a network security tool-chain, etc. The Blueprint is meant to support ad-hoc operations for 

specific implementations falling into that Category. For instance, the NFVCL currently provides 4 different 5G 

system implementations, based on different open-source projects, namely Free5GC, Open5GS, OpenAir 

Interface and SD-Core. 

The Blueprint Category allows to have a homogeneous north-bound interface against the different 

implementations available for an ecosystem, since it defines a single input meta-data model (including the 

possible ecosystem end-points) and the associated ecosystem-level LCM methods. For example, the 5G 

System Blueprint Category exposes operations to add/remove/reconfigure RAN over specific geographical 

areas, to create/modify/destroy network slices, etc., and it fixes the end-points to be physical devices like 

base stations or O-RAN radio units, and networks to be used as 5G DNN. 

A Blueprint provides the implementation-specific means to support the Category methods and to 

translate the metadata model into sets of NSIs and xNFs, interconnected and running with coherent (but 

implementation-specific) configurations. To this end, Blueprints defines the template of the ecosystem 

internal topology, as well as the specification of the internal procedures to be executed for every 

supported Category method. These internal procedures are realized as saga pattern interactions among 

specific NFVCL modules. 

A Blueprint contains a lot of data that can be categorized in: 

 Status: contains information on the status of resources (like the list of interfaces with the relative IPs). 

 Configurators: the list of configurators (status included) that are created and used by the Blueprint 

(Day-0, Day-2, Day-N). 

 Topology: the information on the topology in which the Blueprint is deployed. 

The code of a Blueprint class is the one managing how, and in which order, Resources are generated. The 

Blueprint instance is also managing Day-2 operations like adding, updating and deleting a node from the 

blueprint instance. The new Blueprint system abstracts the concept of Provider, offering a uniform set of 

functions to every type of Blueprint. These functions are offering the tools for the LCM of resources 

composing the specific instance of that type of blueprint. Since a Blueprint can be composed of both VMs 

and K8s resources, the provider interaction is not limited to one, but we can interact with several providers. 
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Figure 3-37: Network ecosystem metamodel. 

 

The topology template defines the 𝒢 graph pattern including the templates of internal network and of NSIs 

that can be applied, and their possible relationship bindings. Everything that is contained in the Topology is 

used by the NFVCL to manage the lifecycle of Blueprints. For example, when a Blueprint is deploying VMs, 

the VIM to be used is identified using the VIM data saved in the Topology. 

Finally, the xNFs metadata model plays a key role in the NFVCL architecture. It defines not only the specific 

physical/virtual/Kubernetes deployment units to be used to materialize NS templates, but it also defines the 

implementation-specific methods and callbacks that can be executed on an xNF, and the models of its 

configuration. In other words, xNF templates represent a sort of glue between NFV-driven LCM operations 

to instantiate or remove artefacts from the ecosystem (e.g., creating a RAN NS in a new area), and 

management operations affecting the configuration of running xNFs (e.g., add a new 5G subscriber, add a 

new policy, etc.). 

Each of these operations might include a variable number of different actions to add NSI instances (Day 0 

and 1 actions), to change the configuration settings of xNFs and to retrieve information from the deployed 

xNFs (Day 2 actions), as well as to remove one or more deployed NSIs. 

 

3.4.2 The NFVCL Architecture 

The NFVCL internal architecture (Figure 3-38) encompasses the meta-models introduced in the previous 

Section. A first module, named NFVCL North Bound Interface aims at exposing CRUD REST APIs for ecosystem 

LCM trough the methods defined in the Blueprint Category meta-models that are available and onboarded 

to the NFVCL. Among these methods, the ecosystem creation and deletion are mandatory (and correspond 

to HTTP POST and DELETE messages). 
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Figure 3-38: The NFVCL internal architecture. 

The NFVCL Topology offers resources needed by the ecosystems through several lists. The VIM List offers the 

possibility to deploy VMs to the NFVCL. This functionality is used by Blueprints to deploy what is requested 

by the user (e.g., a K8s cluster with 1 Controller and 2 Workers for a total of 3 VMs). We can have a list of 

VIMs associated to an area, in this way, the user can select the area in which the Blueprint will be deployed. 

In the case of multiple VIM for the same area, the first one is used. The K8s List contains all the K8s clusters 

that can be used by Blueprints to deploy Helm Charts. As for the VIM List, every K8s cluster is associated to 

an area and the user can select the one to use. The Net List is used to keep track of the networks available in 

the VIMs. Networks can be added manually, if already present, and can be also added and created by a 

Blueprint, if needed. The Metric Server List contains Prometheus instances that can be used to configure 

metrics exporters on Blueprint Resources. Finally, the Physical Device List contains physical network 

functions, for example HW-based UPFs. 

The Blueprint Lifecycle Manager takes care of all the requests towards blueprints, from creation to Day-N 

operations. This component also allows for cross-blueprint interaction (even creation and deletion). 
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The MongoDB database stores all dynamic vital information for the operation of the NFVCL. The two 

main collections to be saved are the status for the topology and, for every instantiated blueprint, the 

status and the topology template. The saved data of the blueprint can also include past actions, like 

executed LCM primitives. 

The Blueprint handles and serializes incoming LCM initialization/change requests on the ecosystem. In 

particular, it is in charge of binding any supported blueprint category method into a coordinated set of 

multiple implementation-specific operation requests against resources in the topology, the LCM of NFV 

Network Service Instances (NSI), or configuration changes within one or multiple xNFs. 

The Provider Aggregator is a layer in charge of abstracting the virtualization and K8s providers in a single 

interface accessible from the blueprint to create and configure its resources. In more details, the 

Virtualization/VM Provider is used to deploy the same blueprint type on different VIM types (currently 

OpenStack and Proxmox) without the need to adjust the blueprint code, and the K8s/Helm Provider 

embodying the same role for Kubernetes. 

3.4.3 Blueprint Deployment and Lifecycle Management 

At the time of writing, the NFVCL supports three open-source cores: Free5GC, OpenAirInterface (OAI) and 

SDCore. Moreover, different deployment options are available for the UPF, namely, as a VM or a or a pod on 

a K8s cluster. For the sake of brevity, in the following we will analyse the creation process and the Day-2 

operations at a general level, highlighting, if necessary, any operations that are specific for a certain core. 

Moreover, excluding the SBA, which is strictly deployed as a pod on a K8s cluster, the other components can 

be deployed as VMs or pods. The VM Provider and Helm Provider are the components created to manage 

VM and pod operations in the NFVCL. The following description accounts for a case in which gNB and UPF 

are deployed as VMs, but the flow charts reported in Annex A report the pod deployment as well. From the 

procedure standpoint, the steps are very similar; the implications for the performance are outlined in the 

following section.  

As mentioned above, the NFVCL can automatically drive the creation of a core, the additional calls performed 

by the VM and Helm providers and related lifecycle operations, (hereinafter referred to as Day-0, Day-1 and 

Day-2, respectively). It is worth pointing out again that the following description represents completely zero-

touch procedures that produce fully working configurations. The workflows reported in Annex A also show 

the number of generated code lines. 

The core creation process orchestrates the deployment and configuration of essential 5G core components 

using a combination of blueprints and infrastructure providers through the interaction of blueprint modules, 

VM and Helm providers. Supported VM providers are OpenStack and Proxmox. This automated workflow 

ensures the seamless setup of such essential components, namely the SBA, the router and the UPF. 

The operation begins with the GENERIC_CORE Blueprint, which initiates the creation sequence of the 

GENERIC_UPF Blueprint. In turn, the UPF Blueprint initiates the creation of the GENERIC_ROUTER Blueprint. 

These nested calls are also important during the core deletion phase, because blueprints store a hierarchical 

structure of their child blueprints, allowing for the correct deletion of each deployed component. 

The VM provider manages the creation and configuration of the router VM, after which the router blueprint 

makes its details available via a callable function. Once the router is ready, the UPF blueprint proceeds to 

provision its own VM. To enable data routing through the network, the UPF blueprint interacts with the 

router blueprint to request the addition of routing information. The router is reconfigured accordingly, and 

confirmation is sent once the new routes are in place. Upon successful creation and configuration of the UPF 

and routing infrastructure, the UPF blueprint notifies the CORE blueprint, which then queries the UPF for its 
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connection details. With this foundational network layer established, the CORE blueprint proceeds to deploy 

the core network components by instructing the Helm Provider to install the core Helm chart. This action 

represents the deployment of the main 5G core services. 

Finally, the CORE blueprint coordinates with the GENERIC_GNB Blueprint to configure it. This involves the 

VM Provider once again, which handles the underlying configuration of the GNB VM. When configuration is 

complete, the GNB blueprint confirms readiness to the CORE blueprint. 

This end-to-end process results in a fully provisioned and configured 5G core network, complete with UPF, 

router, gNB, and core services. 

To add a DNN, the GENERIC_CORE updates its values according to the new DNN value, then send them to 

the Helm Provider to update the pods accordingly. 

To add a slice, the GENERIC_CORE updates its values according to new slice value then sends them to the 

Helm Provider to update the pods. Once the pods are successfully updated, the GENERIC_UPF Blueprint must 

also be updated to align with the new configuration. However, before proceeding with the UPF update, a 

routing validation must be performed to ensure that the network paths are correctly established and 

consistent with the new slice configuration. Additional operations are required by some of the available 

cores. Namely, for Free5Gc is necessary to restart the SMF after each UPF reboot. This is otherwise the 

connection between the two components will not be stabilized. OpenAirInterface instead always requires a 

UPF restart when core data is changed, which causes pods to restart, for the same reason as Free5Gc. 

The addition of a new TAC is initiated by the GENERIC_CORE with the creation of a new UPF instance. Then, 

the GENERIC_UPF creates a new router blueprint instance (router_5g). The GENERIC_ROUTER then contacts 

the VM Provider to create a new VM for the router. Once the VM is created, it is configured by the VM 

Provider. 

Next, the GENERIC_UPF asks the VM Provider to create and configure a VM for the UPF component. Once 

this VM is ready, the GENERIC_UPF Blueprint requests the GENERIC_ROUTER to add routing rules to enable 

data routing. The router instructs the VM Provider to configure these routes, and confirmation is returned 

when the configuration is complete. 

After the routing is set up, the GENERIC_UPF notifies the GENERIC_CORE that the UPF is ready. The 

GENERIC_CORE then retrieves the updated UPF information and uses this data to create new configuration 

values for the Helm Provider to update the core Helm chart. The Helm Provider applies the update and 

confirms that the values have been successfully updated. 

Once the core configuration is up to date, the GENERIC_CORE initiates the configuration of a new GNB by 

coordinating with the GENERIC_GNB. 

After configuration is completed, the GENERIC_CORE Blueprint acknowledges that the entire process, 

including the addition of the new TAC, has been successfully completed. 

Adding a UE is different depending on the Core you're considering. SDCore also includes subscriber data 

among its values, so in its case, simply adding the new data and launching a pod update will suffice. Free5GC 

and OpenAirInterface, on the other hand, have the UDR that exposes the APIs needed to add a new 

subscriber. The process for deleting a UE is the same. 

To delete a TAC, the GENERIC_CORE call the delete function on the GENERIC_UPF associate at that area. The 

GENERIC_UPF also calls the delete function on the GENERIC_ROUTER associate at that area. The 

VM_PROVIDER first deletes the GENERIC_ROUTER and then the GENERIC_UPF, after that GENERIC_CORE 

updates his configuration and sends it to HELM_PROVIDER to update pods. 
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This deletion operation follows the hierarchical structure of the blueprints, allowing for the correct deletion of each 

deployed component. The "final_cleanup" function is called as the last operation when deleting a core component 

and is used to delete the resources instantiated on the provider on which that component was running. 

Deleting a slice begins with deleting it from the core values. It is then necessary to update the values of the 

UPF associated with that slice and the routing rules on router. 

Deleting a DNN first involves removing it from the GENERIC_CORE values followed by updating the pods. The 

same procedures are applied for the addition and deletion of a UE. 

The core deletion workflow is initiated by the GENERIC_CORE Blueprint that sends a request to the 

GENERIC_UPF Blueprint to delete its blueprint. The GENERIC_UPF Blueprint, in turn, triggers the deletion of 

the GENERIC_ROUTER Blueprint. Once the VM is destroyed, the router blueprint performs final cleanup, and 

the blueprint is removed. Next, the GENERIC_UPF Blueprint proceeds to request the VM Provider to destroy 

its own UPF VM. The VM Provider confirms the VM destruction, after which the UPF blueprint performs its 

final cleanup tasks and is marked as deleted. After the UPF has been removed, the GENERIC_CORE Blueprint 

coordinates with the Helm Provider to uninstall the core Helm chart. Finally, the GENERIC_CORE Blueprint 

performs its own final cleanup. At this point, all the associated components have been properly removed, 

and the entire network teardown process is complete. 

Results 

Several testing campaigns have been run to assess the performance of the NFVCL. Deciding how to carry out 

such an assessment is a non-trivial task: the obvious would be to compare the time required for deploying and 

performing lifecycle operations on a 5GS manually and in the presence of the NFVCL; however, it is very hard 

to compare an automated and a manual operation, as the former is somewhat deterministic while the latter 

heavily depends on the skills/speed of the operator. This is likely the main reason why a comparison of the time 

it takes to perform lifecycle operation in different open-source cores is not yet available in the state of the art. 

 

Figure 3-39. Execution time of lifecycle operations performed on Free5GC. 
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Figure 3-40. Execution time of lifecycle operations performed on OpenAirInterface. 

 

 

Figure 3-41. Execution time of lifecycle operations performed on SDCore. 
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In order to proceed with the assessment and, at 

the same time, contribute to the body of 

knowledge on upcoming 5G technologies, we 

decided to first provide a breakdown and a 

comparison of the time needed to manage the 

lifecycle of three well-known open-source 

cores, namely Free5GC, OpenAirInterface (OAI) 

and SDCore. Following, we provide a 

breakdown of the number of code lines 

automatically generated by the NFVCL to 

configure the 5GS at runtime to highlight the 

benefits of automation. Figure 3-39-Figure 3-41 

show the average time (over 10 tests) that it 

takes to perform the lifecycle operations 

described earlier in this section. Day-0 operations are represented with a dotted pattern, Day-1 with diagonal 

stripes and Day-2 is solid. The first, most prominent feature is the higher time required by the cores that 

deploy the UPF in a VM, which is experienced for all the cores: indeed, the creation of VMs takes longer than 

spawning a pod on K8s. In order to minimize this overhead, the NFVCL allows to work on already available 

execution environments and VM images, however the hypervisors are responsible for the additional 

deployment time seen in these results. 

It is also worth noting that OAI requires additional operations because its UPF contains information 

related to the slice, which means it has to be rebooted upon changes to the slices and TACs. OAI is also 

less “stable” than the other cores, hence sometimes the same operations need to be repeated in order 

to avoid misconfigurations. Free5GC also requires additional operations as the SMF needs to be restarted 

upon update of the UPF, but the resulting overhead is negligible and does not emerge from the results 

in Figure 3-39-Figure 3-41. 

In total, VM deployments take three times as long, as shown in Figure 3-42. Although OAI requires more 

steps to perform the same lifecycle operations, the total time that it takes is just slightly higher with respect 

to Free5GC and SDCore. On the other hand, while Free5GC and SDCore performs the exact same operations, 

their execution times slightly vary: for example, the core creation and deletion take longer for Free5GC but 

other Day-2 operations (e.g., UE addition/deletion) take longer for SDCore because Free5GC offers specific 

APIs for UE management while SDCore requires pod reboot upon configuration updates. 

Further considerations can be drawn by summing the execution times on a per-Day basis and showing the 

minimum and maximum values along with the averages, reported in Figure 3-43 (UPF deployed in a pod) and 

Figure 3-44 (UPF deployed in a VM). For both VM and pod deployments, Day-0 operations have the highest 

deviation from the average, especially for Free5GC. While the three core releases have very similar values in 

Figure 3-43, when the UPF is deployed in a VM OAI takes less time than Free5GC and SDCore, because the 

Docker setup is more complex and time-consuming, and Free5GC has a less deterministic Day-0 execution time. 

Day-1 operations have quite similar minimum, average and maximum values for the three cores, and the 

differences among them are almost the same when the UPF is deployed in a pod or in a VM. The same can 

be said for Day-2 operations, with OAI taking slightly longer with respect to the other ones especially in the 

case of pod deployment. 

 

Figure 3-42. Sum of the execution times categorized in the 
above Figures. 
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Figure 3-45: Number of code lines generated by the NFVCL for the automated configuration, deployment and 
orchestration of the three tested cores. 
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Figure 3-43: Distribution of the execution times for the three 5GSs with the UPF deployed in a pod. 

 

 

Figure 3-44: Distribution of the execution times for the three 5GSs with the UPF deployed in a VM. 
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Finally, it is worth highlighting the most distinguishable feature of the NFVCL, namely automation. Figure 

3-45 reports the number of code lines that are created in a zero-touch fashion for the three cores. The 

difference between a VM or pod deployment is around 500 lines for all cores, with Free5GC and SDCore 

presenting similar values while the OAI deployment requires the generation of more than double code 

lines, which is consistent with the higher number of required Day-1 operations. Automation of 

configurations is particularly useful during experimentation campaigns: along with the reduced times 

achieved by onboarding ready-for-use VMs, it allows experimenters to neglect the specificities of each 

core, reducing the time it takes for configuring the tests as well as the chance of errors. For instance, if we 

consider the lifecycle of a UPF deployed in a VM, the NFVCL allows to skip the VM creation, installation of 

the required, core-specific dependencies, Docker installation, image download and Docker compose 

editing. Moreover, it enhances the reproducibility of the tests, as the same configuration can be passed 

along and used with minor changes specific to their own execution environment (e.g., network names, 

topologies, etc.). 

 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  64 of 158 

D2.3 – The 6Green Enabling Technologies  

 Network Slice Lifecycle and Power Management in Serverless 
Environments 

4.1 Stateful FaaS for Energy Consumption Minimisation 

4.1.1 Mathematical Modelling and Analysis 

Serverless computing and the FaaS programming model are popular in the cloud [10] and they have attracted 

significant interest also at the edge [11]. With FaaS an application is made of a sequence of stateless function 

calls, which can be arranged in chains (i.e., f1 --> f2 --> … --> fN) or more complex structures, like DAG [12]. 

However, realistic applications typically do need function execution to be associated with some state, 

especially for edge applications, such as AI and real-time analytics [13]. 

 

Figure 4-1: Example of how to realize stateful processing with stateless FaaS. 

A straightforward solution to this problem, which we call  stateless FaaS, is to maintain the state on an 

external storage system to be accessed on demand by the functions as part of their execution, as 

explained, e.g., in [14]. Such a deployment option is illustrated in the example in Figure 4-1, where 

function f(.) requires input from two dependencies (1 and 2) and has two outputs (3 and 4). When the 

function receives input 1, it is kept temporarily in the state storage. Once input 2 is received, full 

processing can occur combining the latter with the previous input 1 and the state, to produce the final 

outputs 3 and 4, after updating the state on the storage. 
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Figure 4-2: Example of stateful FaaS. 

In common serverless computing platforms, function invocation happens through an HTTP command issued 

on a web server running in a container. Due to the lack of state, the same container can serve multiple 

users/sessions seamlessly, and the orchestration platform can easily perform autoscaling of such runners, 

i.e., decreasing or increasing the number of instances per function to match the instantaneous demand. An 

alternative to this strategy is dedicating each user/session to a runner, thus realizing what we call stateful 

FaaS. As illustrated in the example in Figure 4-2, with this model there is no need to fetch/update the state 

or store temporary input from previous function calls. In principle, the stateful FaaS model has two 

inconveniences. First, the number of runners may be much higher than that with stateless FaaS, because the 

former cannot exploit statistical multiplexing of multiple users/sessions like the latter. Second, if a runner is 

migrated from one node to another for any reason, e.g., system resource optimization, its internal state must 

be moved to the target host. 

 

Figure 4-3: Migration of a stateful FaaS runner from node A to node B. 
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We show an example in Figure 4-3, where the orchestrator migrates a runner for the function f(.) from node 

A to node B. First, when stopping f(.) on node A the state is stored temporarily on an external system, which 

is then queried by the new instance of function f(.) on node B upon creation. With this solution, there would 

be a period during which the task performed by f(.) is not available. More sophisticated protocols can be 

devised [15], but, in any case, they would incur additional complexity or overhead, which is not needed with 

stateless FaaS. The impact of state migration on energy consumption is captured by the mathematical model 

defined and evaluated later. 

 

Figure 4-4: Deployment of a three-function chain (top) on two processing nodes through stateless FaaS (middle) and 
stateful FaaS (bottom). 
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layer is needed to dispatch function invocations to one of the matching runners: this is represented by a 

logical component called broker, borrowing the terminology from [16], which is an early study on the 

realization of distributed computing in pervasive systems. As can be seen, network traffic is generated at 

each function call for state access, on the state storage, and for invoking the next runner through the broker. 

On the other hand, with stateful FaaS, we need logical components to mesh the runners, which can be within 

a node or at a system level. Network access for accessing the state is unnecessary because the state is 

embedded within the runner. Furthermore, when a runner invokes another on the same node no network 

access is needed, too. 

We now define a mathematical model to estimate the energy consumed in a time horizon T for executing 

the applications that enter/leave the system during that period. The model is intended to be used to evaluate 

high-level deployment strategies and run-time orchestration policies and, as such, it is not intended to 

provide quantitatively accurate results, but rather qualitative guidelines to drive algorithm design and high-

level resource provisioning. 

 

 

Figure 4-5: Application model. An app 𝑎 consists of functions arranged in a graph. If function 𝑢   calls function, 𝑣 then an 
edge exists, and its weight 𝑑𝑎𝑢𝑣   is the amount of data exchanged. Each function 𝑣 has a state of size 𝑠𝑎𝑣. 

We assume the workload is made of applications (apps for short) that enter and leave the system dynamically 

at given times 𝑡𝑎
↓  and 𝑡𝑎

↑ , for app 𝑎. An app 𝑎 consists of some functions (or tasks) arranged in a directed 

dependency graph 𝐺𝑎(𝑉𝑎 , 𝐸𝑎). Each vertex 𝑣 ∈ 𝑉𝑎  is a task that depends on its predecessors (incoming edges) 

and produces output towards its successors (outgoing edges). The amount of data exchanged when task 𝑢 

calls its successor task 𝑣 is 𝑑𝑎𝑢𝑣 , in bits. Without loss of generality, to have a more compact notation, we 

assume that the invocation rate is common for all the tasks within app 𝑎 and equal to 𝜆𝑎. Task 𝑣 has an 

internal state of size 𝑠𝑎𝑣, in bits, and a processing request equal to 𝑟𝑎𝑣, in fractions of CPU. An example of a 

dependency graph is illustrated in Figure 4-5. In the following, we consider the system as dynamic, 

characterized by a series of discrete events happening at time 𝑡𝑘 ∈ {𝑡1, … , 𝑡𝑁}, where 𝑡𝑁 is the end of the 

period of interest and the other events correspond to an application entering or leaving the system. Between 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  68 of 158 

D2.3 – The 6Green Enabling Technologies  

two consecutive events the power consumption remains stable (in a statistical sense) and we can 

characterize its average value through two step-wise functions, which are constant from time 𝑡𝑘 until the 

next event 𝑡𝑘+1 : 𝛼(𝑡𝑘) is number of edge nodes used at time 𝑡𝑘 to serve the active applications, where each 

node has a processing capacity 𝐶, in fractions of CPU; 𝛽𝑎(𝑡𝑘) is the average network traffic consumed by 

application 𝑎 in the unit of time. We assume that the power consumption of an edge node is binary: if it is 

used, i.e., it serves at least one stateless FaaS or hosts at least one stateful FaaS runner, then it consumes a 

peak power; otherwise, if it is unused, it does not consume power at all. 

Regardless of the deployment strategy, we can then define the total energy consumed in the system as follows: 

 

where 𝑃𝑁 is the power consumption of an edge node and 𝐸𝐵 is the per-bit network transfer energy, and 

𝐼(⋅) ∈ {0,1} is an indicator function equal to 1 if and only if the condition is true. We focus on energy 

consumption assuming that there are no constraints on the availability of processing and network resources. 

In other words, we assume that the system can accommodate all the incoming requests, hence no admission 

control is needed. The notation used in the paper is summarized in Table 3. 

Table 3: Notation used in the section. The last two rows are used only with Stateful FaaS. 
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For stateless FaaS we adopt a simple model that captures well its distinguishing features. Specifically, we 

assume that the number of active nodes needed at time 𝑡𝑘 is the minimum possible, i.e.: 

 

where 𝐴(𝑡𝑘) is set of applications active at time 𝑡𝑘. The inner summation is the total processing request of app 𝑎, 

which is then summed over all the applications and, finally, divided by the edge node capacity 𝐶. This implicitly 

assumes that no edge effects exist in horizontal scalability and the broker layer can distribute the load appropriately 

among the multiple task instances.  On the other hand, the traffic rate of app 𝑎 at time 𝑡𝑘 is given by: 

 

which is the sum of the traffic generated for the state access (first term) and function invocation between 

each node and its successors (second term), in the unit of time, as given by the invocation rate 𝜆𝑎. 

The model with stateful FaaS is more complicated because it depends on how tasks are assigned to edge 

nodes for three reasons. First, function invocation only consumes network resources if the two tasks are not 

assigned to the same edge. Second, since a stateful FaaS runner cannot be split/recombined, assigning the 

active tasks to available nodes to minimize the number of nodes used is akin to the bin-packing problem, 

which is known to be NP-complete. Finally, as active apps leave the system, fragmentation occurs (a term 

inspired by the similar effect in the memory management process of operating systems), i.e., edge nodes are 

only partially allocated: this is sub-optimal for energy consumption. To solve this problem, we foresee a 

defragmentation process to happen periodically, with the period equal to Δ, which is a system configuration 

parameter: during defragmentation, the active apps are rearranged to reduce the number of edge nodes 

needed, thus saving energy in the future. However, this process consumes energy because the state of some 

runners may have to be migrated from one node to another. 

Now we introduce a last bit of notation: let 𝑥𝑎𝑣(𝑡𝑘) be a variable that indicates what edge node (using an 

arbitrary indexing scheme) hosts the runner for the task 𝑣 of app 𝑎 at time 𝑡𝑘. In time intervals where the 

app is inactive, i.e., before it enters or after it leaves the system, the variable is undefined. The values of 

𝑥𝑎𝑣(𝑡𝑘) must be determined through two orchestration decision-making algorithms: i) when an app enters 

the system, the algorithm chooses where to deploy each of its tasks, by either selecting edge nodes already 

active (hosting other tasks) with sufficient residual capacity or activating new edge nodes; ii) upon 

defragmentation, the tasks of active applications can be migrated to other edge nodes to reduce the total 

number of the active ones. Determining an optimal policy for either of these decision processes has the same 

complexity as finding an optimal allocation for a bin-packing problem, as already mentioned. We propose to 

use the following simple heuristic based on the best-fit policy: 

Stateful|best-fit algorithm: 

 When an app enters the system, for each task we select the active node that hosts one of the 

predecessor tasks, if any (to save network traffic for function invocation). Otherwise, we select the 

active node that leaves the smallest residual capacity, if any, breaking ties arbitrarily. Otherwise, we 

deploy the task on an inactive node. 

 Upon defragmentation, we apply the above algorithm policy to all the active apps, in arbitrary order. 
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We then derive the number of active nodes at time 𝑡𝑘 as: 

 

where | ⋅ | indicates the cardinality of the corresponding set, and the traffic rate of app 𝑎 at time 𝑡𝑘  is: 

 

The first addend considers the state migration if the task was moved since the previous time event (by design, 

this can happen only during the defragmentation procedure) and the second addend considers the network 

traffic for function invocation, only if the task 𝑢 and its successor 𝑣 do not belong to the same node. 

We conclude the section with the evaluation of the performance, in terms of energy consumption, of the 

stateless vs. stateful approaches, indicated as stateless|min-nodes and stateful|best-fit, respectively. For 

reference purposes, we also include two alternatives: stateless|max-balancing, as implied by the name, 

refers to a stateless FaaS system that seeks to maximize load balancing [17]; stateful|random is a variation 

of the stateful policy above, where there is no periodic defragmentation and the tasks of incoming apps are 

assigned to edge nodes at random, respecting the maximum capacity , and a new node is made active only 

if there is none with sufficient residual capacity. For full reproducibility of results, the source code of the 

simulator and the scripts and artifacts are available publicly as open source on GitHub13. 

The workload is created following the model in [18], which is inspired by real traces made available by Alibaba 

and broadly used in the literature, tuned as follows: the arrival and lifetime of apps follow a Poisson 

distribution, with average 1 s and 60 s, respectively; both the state size and the data invocation size are 

derived from the memory requirements produced by [18], by applying multiplicative factors called 𝑆   (state) 

and 𝐷    (data invocation), where 𝐷 is always set to 100, which corresponds to the range [2, 303] kB, and 𝑆   

is expressed through the ratio 𝑆/𝐷 , which is 100 by default, in which case 𝑆 would be in the range [0.2, 30.3] 

MB. The invocation rate is 5/s and the capacity of a node is set to 1000, which is sufficient to host any single 

task, whose requested capacity is drawn from an empiric distribution with a maximum value of 800. The 

edge node power consumption was set to 100 W, which is typical for a small device such as an Intel NUC; 

estimating the network consumption is much more complicated because it depends not only on the 

devices but also on the overall networking infrastructure: based on the results from a recent study  [19], 

we have experimented with different values in the range [0.05, 5] μW/b/s. Each experiment lasted 1 day 

of simulated time and was repeated 1000 times; the plots show the average value across the repetitions 

with a symbol and the low (0.025) and high (0.975) quantiles as error bars. All the values above are to 

be considered unless specified otherwise. 

In Figure 4-6 we show 𝛼  and 𝛽14  with different combinations of Δ  and the 𝑆/𝐷   ratio, only with 

stateful|best-fit. 𝛽 is affected significantly by both Δ and 𝑆/𝐷: when the state is heavier (𝑆/𝐷 = 100), the 

                                                           
13 https://github.com/ccicconetti/stateful-faas-sim (experiment 001) 
14 We omit the subscript a as we plot the average traffic rate 
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network traffic is very high with small values of Δ (note the log scale on the y-axis) because frequent 

migrations are expensive. This effect is much less prominent with 𝑆/𝐷 = 10 and 𝑆/𝐷 = 1, because of the 

smaller state sizes compared to the invocation data sizes. With increasing Δ, all the curves initially decrease 

and then, increase again until they converge to the same value (as the defragmentation becomes more 

sporadic, the state size becomes less important). The minima of the curves depend on the specific value 

of /𝐷 . The number of active nodes is independent of 𝑆/𝐷 and always increases with Δ. The choice of Δ 

incurs a trade-off in the energy consumption of computation vs. network. In the following, we set the value 

of Δ to 120 s, i.e., twice the average app lifetime, which appears as a reasonable trade-off between 

network vs. processing consumption. 

 

Figure 4-6: Simulations: 𝛼 and 𝛽 vs. defragmentation period 𝛥. 

In Figure 4-7 we show the energy consumption with increasing 𝐸𝐵  while keeping 100 W. The energy 

consumption increase with a higher per-bit-rate cost is higher with a stateless deployment, especially in the 

max-balancing flavour, and is very modest with a stateful deployment. In the latter case, we can see that the 

best-fit policy reduces energy consumption by about 2 compared to random, for all values of 𝐸𝐵 . In the 

following, we only consider the two extremes of the 𝐸𝐵 range. 

 

Figure 4-7: Simulations: energy consumption vs. 𝐸𝐵. 
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Figure 4-8: Simulations: energy consumption vs. 𝑆/𝐷, 𝐸𝐵 = 0.05 μW/b/s. 

The impact of the state size, compared to the data invocation size, is exposed in Figure 4-8, with low per-bit-

rate energy cost, i.e., 𝐸𝐵 = 0.05 μW/b/s. A stateless deployment, with a min-nodes policy, is the best option 

only for 𝑆/𝐷 ≤ 10 and only by a small margin compared to stateful|best-fit. On the other hand, as 𝑆/𝐷  

increases significantly above 10, stateless deployment becomes significantly more energy-hungry, due to the 

cost of accessing the state upon each function invocation. With 𝑆/𝐷 > 100, stateless is outperformed even 

by stateful|random. The max-balancing policy follows the same trend as min-nodes and is always above the 

latter, though the gap reduces slightly as 𝑆/𝐷 increases. From an energy consumption perspective, stateful 

deployments are almost insensitive to the size of the applications' states. 

 

Figure 4-9: Simulations: energy consumption vs. average application lifetime. 

In Figure 4-9 we report the measurements obtained with min/max 𝐸𝐵 values for stateful policies (with 

stateless, the values with maximum  𝐸𝐵  are well above the plot -axis range) when increasing the 

application lifetime from 15 s to 120 s. As expected, all the curves increase with the load. Both 

stateful|best-fit curves lie at the bottom and gain an increasing margin compared to all the others as 

the load increases. The second-best option is stateless|min-nodes (only with minimum 𝐸𝐵), while the 

stateless|max-balancing performs worst. 
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Figure 4-10: Simulations: energy consumption vs. node capacity. 

Finally, in Figure 4-10 we show the energy consumption (only due to processing) with increasing node 
capacity from 800 to 4000. All the curves decrease because with increasing 𝐶 the number of nodes required 
decreases, as well, while we keep the power consumption per node 𝑃𝑁 constant. It is interesting to note that 
the curves are almost overlapping in pairs. At the bottom (less energy consumed) we find stateful|best-fit 
and stateless|min-nodes: in fact, they both aim at reducing the edge computing infrastructure energy 
consumption. Stateless has a slight gain compared to stateful, but it is more than compensated by a lower 
energy efficiency from the network traffic perspective. At the top (more energy consumed), the two 
comparison systems show similar performance, which can be explained by the fact that they both try to 
spread as much as possible the load among the active nodes: stateless|max-balancing does this explicitly, 
stateful|random implicitly. A stateful deployment, with a best-fit allocation strategy, can be as efficient as a 
stateless one despite the fragmentation issue. 

4.1.2 Experimental Evaluation 

We now illustrate the results obtained with a testbed of small edge nodes, related to the practical comparison 

of the stateless vs. stateful serverless computing paradigms. 

 

Figure 4-11: Testbed used for the evaluation of stateless vs. stateful serverless computing. 
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The testbed is hosted by CNR-IIT and is illustrated in Figure 4.11. It includes 21 hosts in total: 

 1 Virtual Machine running on an Intel server in the CNR data centre, interconnected with the other 

hosts via a 1 GbE LAN. 

 10 NVIDIA AGX Orin 64 Gb embedded devices. 

 10 Raspberry PI 5 single-board computers. 

The following ancillary devices were used for the experiments: 

 Cisco L2 switches, in stack mode, providing all the hosts with 1 GbE (RPi) and 10 GbE (Orin) 

connectivity.Raritan PDUs providing the hosts with power and monitoring the active power of each 

individual device. 

The experiments have been executed with the EDGELESS15, which is a platform that allows the development 

and deployment of stateful agents in the edge-cloud. A single cluster was configured including all the hosts, 

managed by a single orchestrator running on the VM. The scripts to run the experiments and to analyse the 

data are all available publicly, together with the artifacts of our experiments, on a GitHub repository16. 

 

Figure 4-12: Workflows used for the experiments: (a) stateful, vs. (b) stateless. 

                                                           
15 https://github.com/edgeless-project/edgeless/ 
16 009-6green-state, 010-6green-calib, and 011-multicore 

https://github.com/edgeless-project/edgeless/
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In Figure 4.12 we illustrate the two workflows (applications) used for the experiments. In (a) the workflow 

consists of a trigger function that generates messages with Poisson-distributed interarrival times. The 

message is sent to a stateful function that performs a processing operation on its internal state. In particular, 

the state consists of a vector of 32-bit floating point numbers, initialized with random values between 0 and 

1, and the operation is the element-wise computation of the trigonometric sin() function. After the operation 

is complete, a message is generated towards the trigger function to record message latencies. The workflow 

in (b) is functionally equivalent but the state, i.e., the vector, of each application is kept in an in-memory Key 

Value Store (KVS) hosted on the server VM. Therefore, the stateless function is forced to read the vector 

before each operation and update it with the new values afterwards. The workflows were configured with 

annotations that forced the orchestrator to assign the trigger function instances to the VM, while the 

stateful/stateless function instances to the edge nodes in a random fashion. 

Calibration experiments. We have run initial experiments to calibrate the system parameters, whose results 

are reported in the following. 

First, we have created an incremental number of stateful workflows, one every 60 seconds, deployed on the 

same Orin. Each workflow had a rate of 80 Hz, with a state of size 100k (i.e., the vector had 100k elements, 

corresponding to an in-memory size of 400 kbytes). 

 

Figure 4-13: Calibration experiment with increasing stateful flows. Left: workflow latency. Right: Throughput. 
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In Figure 4.13 (left) we show the workflow latency over time, which increases only slightly until the node 

becomes overloaded after the 10-th workflow is added. Similarly, in the right part we can see that the 

throughput of the workflows is stable until the last flow, with spurious spikes only occurring whenever a new 

flow is added for edge effects in post-processing the data. 

 

Figure 4-14: Calibration experiment with increasing stateful flows. Function execution (left) vs. transfer (right) time. 

In Figure 4.14 we break down the workflow latency in the two main components, which are the time needed 

for the processing operation (left) and the latency introduced by the network and trigger function (right), 

called function transfer time. The latter has a more stable behaviour than the former, with spikes that are 

caused by the initialization of the state when a new workflow is created. When the system becomes unstable, 

after the last workflow is added, the function execution time remains bounded, but the transfer time grows 

indefinitely. 

 

Figure 4-15: Calibration experiment with increasing stateful flows. Left: active power. Right: CPU usage. 

Finally, in Figure 4.15 we report the active power (left) and CPU usage (right). It is interesting to note that 

there is a clear positive correlation between these metrics, whose values follow the same qualitative trend. 

This confirms the intuition that the active power of AGX Orin devices is a linear function of the CPU usage, 

with an offset given by the idle consumption. 
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We now report the results from a second batch of calibration experiments. We used both Orin and RPi 

devices, but always one at time for each experiment. Again, we only deployed stateful workflows with a 

message rate of 80 Hz. We repeated multiple experiments, with 1 vs. 10 workflows, and with variable state 

sizes from 1k to 1M elements. 

 

Figure 4-16: Calibration experiments with various state sizes. Left: workflow latency. Right: network traffic. 

In Figure 4-16 (left) we report the workflow latency. As can be seen, the latency increases with the state size, 

because more sin() operations are needed. The RPi 5 device can withstand greater state sizes than the AGX 

Orin, which can seem counterintuitive because the latter is more powerful. However, the latter has 8 CPU 

cores, while the RPi 5 has only 4, therefore the per-CPU processing power of the RPi 5 is greater. We note 

that, in EDGELESS, function instances execute in a WebAssembly run-time environment that is designed for 

single-thread operation.  In the right plot, we report the network traffic per node, which takes into account 

the messages exchanged in the data plane, as well as the control and management of the EDGELESS node 

services. The traffic is not affected by the state size, because the functions are stateful. There is a light 

decrease only when the system is unstable. 

 

Figure 4-17: Calibration experiments with various state sizes. Left: active power. Right: CPU usage. 

Finally, in Figure 4-17 (left) we report the memory occupancy of the EDGELESS service running in the nodes, 

in percentage of the overall memory available. As expected, the occupancy increases with the state size, but 

the increase is modest compared to the baseline, because of the relatively small size of the state footprint in 
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memory; even with 1 M elements, each state occupies 4 MB, while the RPi 5 is equipped with 8 GB of RAM 

and the AGX Orin with 64 GB, shared between CPU/GPU. The right plot shows the CPU usage, which on the 

other hand increases significantly with both the state size and the number of workflows, because of the CPU-

bound nature of the application used in the experiments. 

Full experiments. In the full experiments 20 devices (10 RPi + 10 Orin), with 20 and 200 workflows, state size 

of 10, 1k, and 100k elements, and we compared the two patterns stateful vs. stateless. In particular, for the 

stateful case we deployed precisely the given number of workflows (20 or 200), each with a message rate of 

100 Hz, where function instances are assigned at random to nodes by the orchestrator. On the other hand, 

to mimic a typical serverless computing deployment, for the stateless case we forced the orchestrator to 

deploy exactly one workflow on each node, then we adjusted the message rate to emulate the same load as 

with a stateful workflow. 

 

Figure 4-18: Full experiments, stateful vs. stateless. Left: latency. Right: loss ratio. 

In Figure 4-18 (left) we show the workflow latency. The results are grouped based on the number of 

workflows, 20 or 200, which means an average of 1 or 10 function instances per node; remember that the 

assignment of function instances to nodes is done by an orchestration function at random, there it can 

happen that some node is loaded more than others. On the x-axis, we indicate labels that specify the 

deployment mode, i.e., stateful (L = local state) or stateless (R = remote state), and the state size, from 10 

elements to 100k elements. The same format is adopted throughout the analysis. The plot leads us to several 

observations, which are confirmed by results shown later: 

 Stateful deployment exhibits a significantly lower latency, not only with a large state (e.g., 100k), but 

also with a very small state of 10 elements. This is due to the cost of accessing the remote state, even 

if the latter is stored in a service in the same LAN as the edge nodes, which is an optimistic scenario. 

A more realistic would involve the state located in some cloud-hosted storage service, which would 

increase the remote access penalty in terms of latency. 

 With a stateful deployment, the latency with 200 workflows is not significantly higher than that with 

20 workflows. Rather, with 10 and 1k elements, which have a modest processing cost, the latency is 

slightly lower on average, and with comparable spread. Only with 100k elements the tail latency 

increases significantly (note the plot has a log-scale in the y-axis), but the average is still similar. This 

counterintuitive behaviour suggests that the nodes are not overloaded. 

 However, with a stateless deployment, the latency with 200 workflows is significantly higher than 

that with 20 workflows, by at least an order of magnitude. Since this cannot be due to the processing 
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in function instances, which is the same as in the stateful case, we believe the effect is due to the 

contention on the state retrieve/update operations. In fact, when the state is greatest, i.e., with 100k 

elements, the system becomes unstable, with latencies growing arbitrarily. Figure 4-18 (right) 

confirms this by reporting the loss ratio, i.e., the ratio between the messages received back by the 

trigger function (see Figure 4-12) and those emitted by it: stateless with 200 workflows and 100k 

elements is the only case with a non-negligible loss ratio. 

 

Figure 4-19: Full experiments, stateful vs. stateless. Memory occupancy of Orin (left) and RPi (right) devices. 

In Figure 4-19 we report the memory occupancy, grouped by node type: AGX Orin devices on the left, RPi 5 

devices on the right. Since the occupancy is expressed in percentage, the baselines for the two devices are 

different (AGX Orin ones have 64 GB of RAM, RPi 5 devices only 8 GB), but the qualitative behaviour is the 

same. With a stateful deployment the memory occupancy increases with the state size, which is fully 

expected because the state is kept locally at each function instance; on the other hand, a remote deployment 

is independent from the size of the state, which is stored externally. In our experiments, the state has a 

modest size compared to the availability, therefore the different memory occupancy difference is barely 

noticeable, in the order of 0.1%-0.2%. However the memory requirement of a stateful deployment may 

become a limiting factor when the state is either very large or the memory availability on edge nodes is 

severely constrained. 

 

Figure 4-20: Full experiments, stateful vs. stateless. CPU usage of Orin (left) and RPi (right) devices. 
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In Figure 4-20 we report the CPU usage. The results confirm our observations about the latency. In fact, we 

see that, in general, the CPU is always underloaded. In relative terms, there is a significant increase from 20 

to 200 workflows, due to the extra work; also, the CPU usage increases with the state size, because more 

sin() operations are needed. With a stateless deployment and largest state size, i.e., R-100k in the plots, the 

CPU usage is the same for 20 and 200 workflows only because the system is unstable: the service rate is not 

CPU-bound but rather state-access-bound. 

 

Figure 4-21: Full experiments, stateful vs. stateless. Network traffic of Orin (left) and RPi (right) devices. 

In Figure 4-21 we report the average network traffic per node during the experiment. The results are 

comparable between AGX Orin a RPi 5 devices because this metric only depends on the amount of data 

required by the workflow, including state read/update operations with a stateless deployment, and for 

control/management plane signalling. The network traffic is minimum with a stateful deployment, where it 

depends only on the number of workflows but not the state size. Instead, it grows significantly with a 

stateless deployment because of the state-related network operations. 

 

Figure 4-22: Full experiments, stateful vs. stateless. Active power of Orin (left) and RPi (right) devices.  

In Figure 4-22 we report the active power. A general observation is that AGX Orin devices have much more 

stable power readings, while the RPi 5 devices exhibit erratic measurements. We speculate that this could 

be due to DVFS, and other power consumption mechanisms, performed by the RPi 5. Note that both 

categories of edge nodes have not been tuned for reduced power consumption and are using out-of-the-box 
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configurations. Another general observation is that AGX Orin devices have a much higher baseline power 

consumption than RPi 5 devices, 8.5 W vs. 2.5 W, as confirmed by empirical evidence found in web forums. 

The results do not exhibit strong correlations of the active power with the deployment model, state size, or 

number of workflows, except for stateless deployment with 200 workflows on RPi 5 devices (labels R-10, R-

1k, and R-100k in the right plot). 

 

Figure 4-23: Full experiments, stateful vs. stateless. Active power vs. CPU usage with 20 (left) and 200 (right) 
workflows. 

To delve deeper on this matter, we have broken down the active power results per node, instead of 

aggregating the data samples in box plots as reported in Figure 4-22. Figure 4-23 shows the average active 

power of each node for a corresponding value of average CPU usage, using different colours for the 

deployment model and state size, as well as grouping the results for 20 (left) and 200 (right) workflows. With 

20 workflows (left plot) we can see about half of the points laying in a straight line, which suggests 

proportionality between the active power and the CPU usage: those points correspond to RPi 5 devices, as 

can be inferred by active power being lower than 5 W. On the other hand, AGX Orin devices (above 8.5 W) 

are basically independent from the experiment characteristics. With 200 workflows (right plot), the AGX Orin 

devices remain independent, while the correlation with RPi 5 devices becomes less evident. Comparing these 

results with the previous ones suggests exercising caution about the use of CPU usage as a direct indicator of 

power consumption with AGX Orin and RPi 5 devices, irrespective of the deployment model and overall load. 

4.1.3 Conclusions 

We have performed a comparative analysis of two deployment models for serverless workflows: stateless, 

which is the state-of-the-art approach where the application’s state is stored at an external service and must 

be retrieved/updated when needed, and stateful, where a function instance is deployed for every application 

and, thus, can keep its state local. For the analysis, we have used simulation, based on a custom mathematical 

model, and testbed evaluation with 20 mixed edge nodes, i.e., Raspberry Pi 5 and AGX Orin devices. The 

simulation has led us to identify some key performance trade-offs, especially in terms of power consumption, 

depending on the state size and network characteristics. In brief, using a stateless deployment model is never 

the best choice, unless the state is very small or the external storage service can be accessed with negligible 

performance penalty. The testbed evaluation made this conclusion even stronger. In fact, despite the 

optimistic environment for what concerns the access to the storage service (an in-memory KVS in the same 

LAN as the edge nodes), a stateful deployment exhibited less latency and no noticeable degradation in terms 

of power consumption. We note that there might be cases when a stateful deployment is not possible for 
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practical reasons, including insufficient memory availability on the edge nodes to keep the state, 

administrative requirements on the application state location (e.g., to comply with GDPR rules), or backward 

compatibility with a legacy codebase relying on a stateless deployment model. Finally, we have observed 

some correlation between the CPU usage reported by the edge nodes and their power consumption, as 

measured by a monitored PDU, but only on come conditions. Therefore, it is not possible to use the CPU 

usage as a universal indirect estimator of the power consumption, but more research is needed to find the 

right combination of features for this purpose. 

4.2 Adaptive RAN Power Management in Serverless Environments 

Effective energy optimisation in cloud-native and serverless Radio Access Networks (RANs) requires a 

detailed understanding of how individual system parameters influence total power consumption. Key 

determinants include the power consumed per radio port on the RRU, the configured MIMO level, the utilised 

bandwidth, the adopted TDD split ratio, slicing configuration, OSS user profile, user-generated traffic 

patterns, traffic duration, and the associated application behaviour. These factors collectively define the 

energy profile of the deployed RAN and are critical for the design of intelligent, adaptive power-management 

mechanisms. To assess these dependencies, the project employed the 5G/6G testbed infrastructure 

described in section 5.4.1. A comprehensive measurement campaign was carried out to quantify system-

level behaviour, validate theoretical assumptions, and identify optimisation opportunities relevant for 

serverless and cloud-native deployments. 

4.2.1 Energy Use Patterns on the 5G HW 

The first phase of the evaluation investigated the influence of RAN component states and operational 

configurations on measured power consumption. Figure 4-24 provides an overview of the results, 

distinguishing between the RRH consumption (dark blue line) and the consumption attributable to the two 

power supplies of the IaaS environment (yellow and green lines). 

 

 

 

Figure 4-24: Energy use patterns – 5G HW. 
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When the BBU was not active (Step 0), the RRU exhibited a baseline consumption of 68 W under the tested 

configuration (band n77, 100 MHz bandwidth, QAM 256 DL/UL, 27 dBm per port). Deployment of the 5G Core 

onto the IaaS platform (Step 1) affected only server-side consumption; RRU power remained unchanged. 

Activating the BBU (Step 2) with a UE attached in idle mode increased RRU consumption to 100 W under a 2×2 

MIMO configuration, and subsequently to 105 W when the MIMO configuration was changed to 4×4 (Step 3). 

Adjusting the TDD profile (Step 4 & 5) from a symmetric configuration to a DL-optimised configuration 

resulted in an increase to 108 W. During active user-traffic (Step 6) generation (60 seconds of TCP traffic 

followed by 60 seconds of idle time), consumption peaked at 130 W. The alternation between high (130 W) 

and idle (108 W) power states is clearly reflected in the measurement traces. 

 

Figure 4-25: Dependences between user behaviour and application design on 5GS power usage. 

Figure 4-25 further demonstrates the relationship between user behaviour, application-level design choices, 

and RRH energy usage. Short, intensive download phases—particularly with a high number of parallel TCP 

sessions—drive significantly higher consumption than idle periods. Upload traffic, in contrast, results in only 

a minor increase relative to idle consumption, illustrating that uplink processing is notably less energy 

demanding. Longer download durations proportionally extend the high-consumption plateau, while reducing 

the number of TCP sessions significantly lowers RRU load (less user load can be generated). These insights 

underscore the importance of application design and traffic pattern predictability in the context of energy-

efficient mobile-network operation. 

4.2.2 Energy Use Patterns on the 5G SW 

To complement the hardware-level analysis, the Scaphandre measurement tool was used to evaluate power 

consumption at the software-component level, including virtualised BBU functions, the 5G Core, and traffic-

generation applications (iPerf). The same test sequence used for hardware evaluation was applied to 

maintain methodological consistency. 

As illustrated in Figure 4-26 software-component consumption scales directly with traffic intensity and the 

associated computational load. More complex MIMO configurations led to higher BBU consumption, while 

application-level tools such as iPerf exhibited consumption patterns that closely correlate with BBU 

workload. These results confirm the strong coupling between RAN functions and application traffic 

characteristics in cloud-native 5G/6G deployments. 
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Figure 4-26: Energy Use Patterns – more complex MIMO configuration causes more power consumption (left, middle), 
5G BBU component’s power consumption correlates to application power consumption. 

 

4.2.3 Advanced Experimentation 

Building upon the initial energy-consumption characterisation, a structured set of optimisation mechanisms 

was experimentally validated. These mechanisms were utilised to manage RAN power usage in response to 

changing operational conditions, with relevance to the 6Green use case focusing on maintaining critical 

communication capabilities during energy-constraint scenarios. 

The following mechanisms were evaluated: gradual cell shutdown, radio port output-power optimisation, 

cell bandwidth adaptation and MIMO-level adaptation. Each mechanism provides different saving potentials 

and implications for end-to-end network performance, which were analysed in detail. 

Gradual Cell Shutdown 

Gradual cell shutdown offers substantial energy savings by transitioning RRUs into standby mode (through 

CPRI link deactivation) or by completely powering off individual RRU units. This mechanism also reduces the 

corresponding BBU processing load for deactivated cells, thereby achieving significant system-wide energy 

reduction. It is particularly suited for low-traffic periods or scenarios where maintaining only minimal 

coverage is acceptable. 

(B)5G Testbed Configuration: 

- Baseline: BBU with 2 × RRU (dual-cell). 

- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4×4, QAM256 DL/UL, TX Power: 26 

dBm/port. 

Test procedure: 

- Cell shutdown via CPRI deactivation and RRU power-off. 
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Figure 4-27: Energy Savings by Applying Gradual Cell Deactivation 

In our test configuration (BBU with two RRUs operating in band n77 at 3800 MHz with 100 MHz bandwidth, 

4×4 MIMO, and 26 dBm per port), deactivating one RRU reduced hardware consumption by up to 50%, 

decreased BBU processing by up to 33%, and reduced 5G Core processing by up to 42%. When two cells each 

served one UE, throughput reached approximately 850 Mbps per UE. When a single active cell served two 

UEs, throughput decreased to roughly 643 Mbps, representing an expected reduction given the operational 

constraints. 

Radio Port Power Optimisation 

Transmission-power optimisation revealed that maximum output power does not necessarily correspond to 

maximum throughput achieved by served UEs. Across the tested RRU port power levels (33, 31, 29, 27, 25, 

and 23 dBm), the highest throughput—950 Mbps—occurred at 27 dBm. This represents up to 121% 

improvement compared with the maximum-power configuration (33 dBm), which achieved only 430 Mbps 

due to increased signal distortion (reference UE was too close to the cell). Lowering the output power to 23 

dBm produced 580 Mbps, offering reduced coverage but still acceptable performance. 

(B)5G Testbed Configuration: 

- Baseline: BBU with 1 × RRU. 

- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4×4, QAM256 DL/UL. 

Test procedure: 

- Reduce TX power from 33, 31, 29, 27, 25 to 23 dBm, 
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Figure 4-28: Radio Port Power Optimisation with Corresponding Throughput Gains 

The optimisation resulted in up to 21% reduction in RRU hardware power consumption and up to 48% 

reduction in 5G Core processing due to lower achievable UE throughput. BBU consumption remained in the 

same range, as its base processing load is not influenced by the RRU transmit-power adjustments. This 

experiment illustrates a key finding: in the case when UEs are close to the cell tower, optimal operational 

efficiency is achieved through moderate rather than maximum transmission power. 

Radio Bandwidth Optimisation 

Bandwidth adaptation on the cell proved to be the most effective mechanism for reducing software-side 

energy consumption. Reducing bandwidth from 100 MHz to 20 MHz decreases the total number of resource 

blocks from 273 to 106 (a 61% reduction), resulting in proportionally lower BBU processing requirements. 

(B)5G Testbed Configuration: 

- Baseline: BBU with 1 × RRU. 

- Cell configuration: n77, 3800 MHz, MIMO: 4×4, QAM256 DL/UL, TX Power: 25 dBm/port. 

Test Procedure 

- Reduce cell Bandwidth from 100, 50 to 20 MHz. 
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Figure 4-29: Energy Reduction Enabled by Bandwidth Downscaling 

The tests showed a minor reduction in RRU hardware consumption (approximately 4%) but a substantial 

decrease in BBU and 5G Core consumption (up to 69% and 62% respectively). The throughput impact was 

proportional to the allocated bandwidth: 1 Gbps at 100 MHz, approximately 500 Mbps at 50 MHz, and 230 

Mbps at 20 MHz. The 20 MHz configuration remains adequate for essential services such as emergency voice, 

messaging, and alert dissemination, making bandwidth optimisation particularly relevant for crisis-response 

scenarios. 

MIMO Level Optimisation 

Adjusting the MIMO configuration offers a balanced optimisation option that delivers both reduced energy 

consumption and improved radio link robustness in degraded radio environments. Lowering the MIMO level 

reduces the number of active RF chains at the RRU and significantly decreases spatial-processing 

requirements at the BBU. 

(B)5G Testbed Configuration: 

- Baseline: BBU with 1 × RRU. 

- Band: n77, 3800 MHz, BW: 100 MHz, QAM256 DL/UL, TX: 25 dBm/port. 

Test Procedure 

- Reduce MIMO from 4×4, 2×2 to SISO level. 
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Figure 4-30: Power Efficiency Improvements via MIMO Downscaling 

Measured savings included up to 16% reduction in RRU hardware consumption, up to 43% reduction in BBU 

consumption, and up to 55% reduction in 5G Core power consumption. Throughput decreased from 

approximately 1 Gbps (4×4 MIMO) to 670 Mbps (2×2 MIMO) and 390 Mbps (SISO). Importantly, the SISO 

configuration demonstrated the highest link stability, which is crucial under non-line-of-sight and 

infrastructure-degraded conditions. 

4.2.4 Main findings 

The validated mechanisms support context-aware optimisation strategies that can be selectively applied 

depending on the operational scenario. Gradual cell shutdown enables up to 50% energy savings on the RRU 

side (base station with two cells) with moderate QoE impact and is well suited for low-density base stations 

or emergency-only operation. Radio transmission-power optimisation delivers up to 25% savings with 

negligible—and under favourable conditions, such as UEs located near the cell site—even positive QoE 

impact. Radio-bandwidth reduction provides up to 70% savings and represents the most effective software-

based mechanism, though it introduces significant capacity constraints. MIMO-level reduction yields up to 

55% savings and enhances link robustness in challenging radio environments. 

The following key conclusions emerged. First, the identified “throughput efficiency paradox” demonstrates 

that moderate transmit-power configurations can outperform high-power operation in both throughput and 

energy efficiency. Second, combining multiple mechanisms produces cumulative benefits, enabling up to 70% 
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total energy reduction in extreme energy-constrained scenarios. Third, the observed deterministic power-

consumption patterns provide a strong foundation for automated AI/ML-based control. 

The comprehensive measurement and validation activities conducted in this task confirm that the 

investigated mechanisms can jointly deliver up to 70% system-wide energy savings, making them suitable for 

highly energy-constrained contexts such as disaster-response operations. The work provides quantified 

performance impacts, identifies important cross-layer efficiency interactions, and establishes a reproducible 

methodological basis for AI/ML-enabled autonomous power management. As next steps, we will integrate 

these findings into higher-level management frameworks, validate the mechanisms under realistic crisis 

conditions as part of the use-case activities, and align them with renewable-energy systems and advanced 

battery-management solutions. 

The complexity and multidimensional nature of RAN energy optimisation necessitate the adoption of AI-

driven approaches. Prediction models can anticipate traffic behaviour and proactively adjust RAN 

configurations. Multi-objective reinforcement-learning methods can balance competing parameters such as 

coverage, QoE, and energy consumption. Context-recognition models enable the system to automatically 

identify operational states, while anomaly-detection models can reveal irregular consumption patterns or 

early signs of hardware degradation. 

4.3 Energy-Aware Network Slice Management in O-RAN 

This modular approach to service delivery achieved by network slicing is complemented by the disaggregation of 

the Radio Access Networks (RAN) architecture as e.g., suggested by the Open RAN (O-RAN) Alliance17 in order to 

enable RAN openness and interoperability. This architecture divides the RAN into three key components: the 

Central Unit (CU), the Distributed Unit (DU), and the Radio Unit (RU), which can be deployed on open hardware 

and cloud nodes as VNFs. Network slicing in O-RAN, is intricately linked to the placement of RAN-specific Network 

Functions (NFs) in the RU, DU, and CU. By deploying DUs closer to RUs at the network edge, operators can reduce 

latency and improve the overall performance of RAN slices. However, in this regard, network slicing in O-RAN is 

mapped into a complex RU, DU, and CU resource allocation problem. Challenges arise in the dynamic allocation 

of these resources to support varying slice requirements and changing slice request patterns, while minimizing 

power consumption and reconfiguration costs associated with VNF migration towards improving slice admittance 

ratio [20]. Generally, VNF allocation is performed either proactively but assuming perfect forecasts of future slice 

admission requests for a quite long time horizon (e.g., [21]), or reactively upon arrival of the slice requests with 

future knowledge on traffic arrivals in an expected sense (e.g., [22], [23]). The above challenges underscore the 

need for innovative solutions to optimize resource utilization, minimize network delay and power consumption 

but also importantly enhance the robustness of O-RAN slicing deployments under uncertainties on future 

knowledge. This section presents our work that contributes towards this direction by solving the problem of 

optimal joint slice admission control and VNFs placement in the O-RAN modules with an iterative Model Predictive 

Control (MPC) strategy that allows considering updated forecasts of future slice arrivals. Also, it aims to shed light 

on the issue of minimizing the reconfiguration costs associated with optimizing multiple slice deployments, which 

are related to slice downtime (decreased slice availability), offering insights into strategies to streamline this 

process and ensure maximization of revenue during slice admission. We appropriately handle reconfiguration 

along the MPC iterations to improve slice admittance in an energy efficient way. Additionally, the proposed setting 

considers vendors' Quality of Service (QoS) issues such as end-to-end delays, but also, an overall green operation 

through accounting for power consumption costs. 

                                                           
17 https://www.o-ran.org 

https://www.o-ran.org/
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4.3.1 System Architecture and Modeling 

Figure 4-31 depicts the deployed O-RAN based architecture. In detail, micro-datacenters, namely Edge Clouds 

(ECs), are deployed at the network edge and serve as computing resources, in the proximity of the radio unit 

enabling low-latency processing and reducing backhaul traffic ℰdenote the set of ECs of the topology. Each 

EC, e ∈ ℰ, hosts a DU responsible for processing and managing network functions associated with specific 

network slices. The ECs are connected with the cell-cite, where an RU is deployed, via fronthaul (FH) 

connections, while midhaul (MH) links connect each EC with the Regional Cloud (RC) datacenter, denoted by 

ℛ, where the CU is deployed. The RC serves as a centralized computing resource for higher-level processing 

and coordination across multiple ECs. The FH links facilitate low-latency communication between the RU and 

the DUs, while MH links provide high-bandwidth connectivity between DUs and CU. For every e ∈ ℰ the total 

computing capacity, in CPU cores is defined as CEe, while the corresponding parameter for the regional cloud 

is denoted by CR . Furthermore, transmission delay of the FH and the MH links is defined as δr,e  and 

δe,ℛ,  ∀e ∈ ℰ, where 𝑟 is the RU. Moreover, CBF,e, CBM,e stand for the bandwidth of the FH and MH links 

associated with the EC, e ∈ ℰ, respectively. 

4.3.2 Slice Request Model 

In the proposed O-RAN-based system modeling, we consider a set F consisting of available VNFs, denoted by 

vf ∈ F that can be deployed to compose various network slices. It is important to note that certain VNFs, 

specifically the VNFs with IDs v0, v1, remain consistent across all network slice requests. In precise, VNFs 

v0, v1 are the initial VNFs used in every request s. When a network slice request s arrives, it is considered as 

an ordered set of elements of F, Fs = {v0
s , v1

s, … , vf
s, … , vns

s } ⊆ F, where v0
s = v0 ∈ F, v1

s = v1 ∈ F. Notably, 

each network slice request s is structured following the Service Function Chain (SFC) deployment model, 

where a specific execution sequence is defined [1]. This sequence dictates the order in which the VNFs are 

processed within the network slice. 

  

Figure 4-31: Proposed O-RAN-based Architecture. 

Additionally, the compute and network related resource requirements are defined per slice s. For a VNF vf ∈

Fs, there exist specific demands regarding CPU cores for the VNF deployment cs,f and the bandwidth for the 

link (f − 1, f) denoted as bs,f. Furthermore, each request s arrives at a specific time ts and has a holding time 

hts, indicating the duration for which the slice remains active once requested. Moreover, an end-to-end delay 

requirement Dmax,s and a priority value prs is defined for each slice request, reflecting its tolerance level for 
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delay and importance, respectively. All notations used are summarized in Table 4. Let us also specify the 

following variables that play an important role in the problem formulation: 

   𝑥 

 

Furthermore, we consider that each EC hosts a single distributed computing unit. The VNF with index 0 is 

placed on the RU, and the remaining VNFs are placed either on an EC or the RC with the constraint that if a 

VNF is placed on an EC all its preceding VNFs in the path should be placed on ECs. 
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Table 4: Selective Notation and Description. 
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4.3.3 Problem Formulation 

System Dynamics and Constraints 

The CPU utilization of each EC evolves as follows: 

 

as obtained after the calculations provided analytically in [24]. In similar lines, we compute the evolution 

equation of the bandwidth utilization of the FH links as: 

 

Next, we shorty describe and provide the remaining system constraints: 

First, the aggregate of the computing resources to bind in any EC or the RC has to be lower than the total 

possible computing capacity of the corresponding cloud, which is expressed as follows: 

 

 

A slice uses a link between the RU and an EC, if its second VNF (i.e., with index 1) is placed in this EC. The 

bandwidth constraints for the FH and MH links are expressed for every time t as follows. 

 

 

For every admitted slice, its first VNF (i.e., with index 0) is placed in the RU: 

 

 

In addition, a VNF f, of an admitted slice s, can be allocated either to a single EC or the RC at every time i.e., 

 

Moreover, for an admitted slice, the VNF 1 should be placed in an EC, which is guaranteed if it cannot be 

placed in the RC, i.e., 

 

Under the assumptions of service chaining and colocation, if for an admitted slice s, a VNF f is placed in an 

EC, the VNFs preceding f in the service chain should be also placed in the same EC. Similarly, if a VNF is placed 

in the RC, its successive VNFs in the service chain of the slice should be also placed in the RC. 
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Therefore, 

 

The total delay imposed by FH and MH links at any time is bounded as follows: 

 

A FH link is considered utilized only if one or more slices have placed their VNFs with index 1 in its 

corresponding EC, i.e.: 

 

A MH link is considered utilized if for any pair of two successive VNFs of any slice, one is placed in the EC and 

the other on the RC, i.e., 

 

Finally, a slice that gets admitted at time should be considered admitted for its entire control lifecycle, i.e., 

 

Objective Function 

To define the objective function we consider three factors, namely: (i) the revenue obtained from slice 

acceptance, (ii) the cost deriving from reallocating already accepted slices, and (iii) the power consumption 

of the ECs and the network links that are utilized for the slice deployment. The revenue of a slice acceptance 

at time t is 

 

For the reallocation cost both VNFs moving from an EC to the RC or vice versa and those VNFs that move 

from an EC to another are considered. The instantaneous reallocation cost of VNFs from an EC to the RC or 

vice versa is expressed as: 

 

while the reallocation cost from an EC to a different EC is expressed by 

 

Regarding the power consumption cost, we follow the modelling of a power efficient VNF placement 

approach from the literature [25]. In case of ECs, it is given by: 
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In case of links that connect the RU with an EC, it is formulated as: 

 

Finally, in case of links that connect an EC with the RC, it can be written as: 

 

Optimization Problem – Problem 1: 

 

subject to: 

all system dynamics and constraints expressed above 

and 

 

where Ce(l), Be(l), ∀e ∈ ℰ are given. The optimization problem is mixed integer quadratically constrained 

problem with quadratic objective. Next, we apply Watters' linearization [26] on the quadratic terms in both 

the objective function and the constraints and the problem takes a MILP form. 

4.3.4 Proposed Solution via Model Predictive Control (MPC) 

To perform dynamic optimal slice admission and resource allocation on admitted slices, we solve the Problem 1 

in a Model Predictive Control (MPC) fashion as illustrated in Figure 4-32. The control period starts at t0 where no 

slices have arrived yet and thus no computing and bandwidth resources have been yet allocated. Problem 1 is 

then solved with initial time t0 and a horizon of H time intervals in the future each of duration Δτ. The number of 

slices and their arrival times within the future time horizon H is unknown and forecasts are used. In this work, 

forecasts are considered given by an external forecasting tool. The decisions about slice admittance and resource 

allocation are obtained for all time intervals within the horizon H. However, we apply only the decisions for time 

t0 and disregard all other decisions for future times. By the time we apply the decisions we also observe which 

slices actually arrived. For slices that were forecasted to arrive but did not, we cancel any related resource 

allocation decision. For slices that arrived without being expected, we also do not allocate resources as otherwise 

infeasibilities and high costs may emerge. At the next decision time, i.e., t0 + Δ, the process is repeated. In 

particular, we observe the updated states regarding the computing resources of the ECs and the RC as well as the 

bandwidth of the links. Also, updated forecasts of the number and arrival times of new slices are obtained for a 

time horizon equal again to H time intervals in the future each of duration Δτ. However, slices that have been 

already accepted at time t0  or earlier, should continue providing service at time l = t0 + Δ, if their updated 

holding time is positive. This requirement cannot be directly handled by Problem 1 and necessitates the additional 

constraint with RFixed(l) the set including all slices satisfying s ∈ R̃(l − Δτ) and hts ≥

Δτ and Xs(l − Δτ) = 1. In addition, the Problem 1 should be adapted in order to account for the potential re-

allocation costs of slices between times two consecutive decision times. To do so we introduce new binary 

parameters  xs,f
e,Fixed, ys,f

Fixed , for all slices s ∈ RFixed(l)  with values set as  xs,f
e,Fixed = xs,f

e (l − Δτ) , ys,f
Fixed =

ys,f(l − Δτ). Based on the above, we formulate Problem 2 that is an adapted version of Problem 1 for being 

integrated in an MPC framework. Algorithm 1 presents a pseudo-code of the solution process. 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  96 of 158 

D2.3 – The 6Green Enabling Technologies  

 

Figure 4-32: MPC Iterations. 

 

Optimization Problem to be integrated in an MPC Framework – Problem 2: 

 

subject to: 

all network dynamics and constraints above 

 

 

where: 
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4.3.5 Evaluation Results (MPC) 

Evaluation Setting: 

This section presents the assessment of the proposed MPC-based solution approach for the problem 1. For 

the implementation of the simulation environment, version 3.10 of Python programming language is used. 

We follow an object-oriented programming approach, defining one class for the slice request model and one 

class for implementing the solution methods, i.e., the proposed mpc-based method and the alternative 

solutions. The substrate network parameters are involved in the solution class. To solve the optimization 

problem we use Gurobi solver, specifically, the gurobipy Python package. The parameter values are given in 

Table 5 and 4. The substrate network consists of three ECs and one RC. We consider two types of slices, 

URLLC and eMBB. VNF requirements adhere to a typical paradigm commonly for cloud service providers. 

These requirements manifest in three distinct flavors, denoted as small, medium, and large. Each flavor 

corresponds to varying levels of resource demands, particularly in terms of CPU cores for our modeling. 

Specifically, the CPU demand per flavor is specified as 2 cores for small, 4 for medium, and 8 for large. In the 
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context of the simulation process, a flavor is chosen equiprobably for each VNF of every slice. We consider 

that the number of slice requests is equal to 15 over a time horizon of 12 time units. In order to perform a 

fair evaluation between the distinct approaches, we assume that the holding time of every deployed slice 

could not exceed the 12 timesteps setup which reflect to 24 hours of deployment time. 

 

Table 5: Network parameters. 

 

Table 6: Slice parameters. 

 

 

We generate forecasts for the time arrival of requests using the following forecasting method. Initially, the 

arrival time of requests is sampled from a discrete uniform distribution over the optimization horizon, H. At 

each time slot of the control period, we solve the Problem 2 and obtain the decision variables. We consider 

that our forecasting method generates forecasts that are inaccurate with probability 10%. In this context, we 

define two forecasting scenarios, namely, (i) Less accurate forecasting scenario: In this scenario, the arrival 

time of not yet realized slice requests is resampled from a discrete uniform distribution over the horizon. 

(ii)Highly accurate forecasting scenario: Under the highly accurate forecasting scenario, 20% of the expected 

requests to arrive resample their time arrival. All the simulations are executed in an Ubuntu 20.04 virtual 

machine with 8 vcpus and 8GB of RAM of an Intel(R) Xeon(R) CPU@2.10GHz server. 

Evaluation Metrics: 

The evaluation focuses on comparing the performance of three distinct methods: the proposed MPC solution, 

an MPC variant that avoids VNF reallocation (MPC-NR), and a one-shot optimization approach that decides 

the admission of slice requests at the first time slot for the entire horizon (One Shot). These methods were 

tested under the two different settings of slice request forecasting that were discussed above, in order to 
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assess their robustness and adaptability to dynamic changing of slice request demands. The evaluation 

metrics for the performance assessment are: 

Acceptance Ratio: The acceptance ratio measures the percentage of admitted slices by a certain time step, 

determined by the active slice subset, which includes ongoing requests yet to expire. It reflects the system's 

efficacy in handling incoming slice demands amidst existing deployment commitments. 

Objective Value: This metric represents the optimization objective value achieved by each method based on 

the actual realization of slice requests, offering insights into their efficiency in resource allocation and 

utilization during the slice requests admission. 

Power Efficiency: This is defined as the ratio of revenue generated by the admitted slices over the total 

power consumption of the compute and network counterparts of the substrate network. The inverse of 

power efficiency signifies the system's effectiveness in conserving energy, with lower values denoting 

higher power efficiency. 

Discussion on the Results: 

Figure 4-33 and Figure 4-34 present the cumulative average of the above evaluation metrics computed over 

a 12-time step horizon for the two cases of the forecasting scenarios, aiming to provide a comprehensive 

overview of the performance trends observed across the simulation. In scenarios with favorable forecast 

conditions, marginal differences are observed between the solution methods. However, upon closer 

examination, MPC demonstrates its adaptability over the prediction horizon, particularly in achieving higher 

acceptance ratios, as shown in Figure 4-33a. At the same time, it maintains optimal values for other key 

metrics compared to MPC-NR and One Shot solutions (Figure 4-33b,c), showcasing its ability to adjust 

resource allocation decisions regarding VNF placement, while achieving to maintain low consumption power 

of the compute and network counterparts. 

The efficacy of the MPC approach becomes more evident in less accurate forecast scenarios. The 

evaluation results regarding this scenario are shown in Figure 4-34. In more detail, despite inherent 

uncertainties, MPC consistently outperforms One Shot optimization method, highlighting its robustness 

and resilience to forecast inaccuracies. Moreover, compared to the MPC solution that totally eliminates 

the reallocation of VNFs, namely the MPC-NR, the proposed MPC approach maintains a substantial 

performance advantage across all evaluated metrics. More precisely, the optimal resource utilization is 

highlighted in Figure 4-34a, where the cumulative average of acceptance ratio is much higher than the 

other approaches from very early during the evaluation period and maintained for the whole horizon, as 

reflected in Figure 4-34b. It is worth mentioning, that despite the higher acceptance ratio, which entails to 

increased resource demand, the proposed MPC approach still outperforms the MPC-NR and One Shot 

methods in terms of power efficiency (Figure 4-34c). 

The observed performance disparities underscore the significance of proactive and adaptive resource 

allocation strategies in dynamic network environments. While traditional optimization methods may suffice 

under ideal conditions, the inherent uncertainty of real-world scenarios necessitates more sophisticated 

approaches. The MPC ability to leverage forecast information to anticipate demand fluctuations and 

proactively optimize resource allocation decisions is a key determinant of its efficacy on slice admission in O-

RAN-based architectures. Furthermore, the performance advantage of the MPC-based approach over MPC-

NR reveals the importance of considering reallocation in dynamic resource allocation strategies. By factoring 

in these costs, the MPC framework effectively manages the trade-offs between resource usage optimization 

and the operational overhead associated with reallocating and migrating VNFs. This ensures optimal resource 

utilization while ensuring higher slice availability with minimal management complexities from the 

infrastructure provider's perspective. 
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Figure 4-33: Comparative evaluation results under highly accurate forecasting scenarios. 

 

Figure 4-34: Comparative evaluation results under less accurate forecasting scenarios. 

In future work, we are going to try adopting the abovementioned formulation in core network and serverless 

scenarios. Especially, for serverless computing paradigm, we will try to develop a two-level virtualization 

mechanism that provides a virtual network to an application (referred to as the related slice) and manages 

the serverless application deployment within the virtual network. By integrating the abovementioned 

forecasting mechanism with a workload estimator related to the application, we can work on creating a 

scaling approach for VNF replicas and virtual network resources. 

4.3.6 Proposed Solution using Reinforcement Learning (RL) 

In this section, we consider a simpler version of the optimization problem for joint admission control and 

resource allocation of network slices in the proposed O-RAN architecture, where the reconfiguration of the 

already admitted slices is being deactivated, by forbidding the reallocation of deployed VNFs. 

A Markov Decision Process (MDP) is a typical framework to describe decision-making problems in a stochastic 

environment. An MDP consists of the set of states ,𝑆,   the set of actions 𝐴,   a state transition function 𝑃,   

which indicates the probability 𝑃( 𝑠′  ∣  𝑠,  𝑎 ) of obtaining the state 𝑠′ when taking action 𝑎 from the state 

𝑠 , the reward function 𝑟 :  𝑆  × 𝐴  → R and the discount factor 𝛾. Specifically, the policy 𝜋 :  𝑆  × 𝐴  → [0,1] 

indicates the probability of choosing the action 𝑎  ∈ 𝐴 from state 𝑠  ∈ 𝑆.  The agent’s objective is to learn an 

optimal policy 𝜋⋅, which maximizes the expected return 𝐸[∑{𝑘 = 0

∞
𝛾𝑘𝑟𝑘], where 𝑟𝑘 is the reward that the 

agent receives after the 𝑘𝑡ℎ RL decision step. 

In our setting, slice requests arrive at the agent and the agent decides whether to accept each one of them 

in order of their arrival times. Slice requests may arrive at the same time slot at the agent where in this case 

ties break arbitrarily. To avoid confusion, the indicator 𝑘  denotes the RL-based decision step for accepting 

or not a slice corresponding to a request, whereas 𝑡𝑘 denotes the time slot of the control window where the 
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RL decision 𝑘  takes place. Multiple RL decision steps 𝑘,  𝑘 + 1,   … ,  𝑚  may refer to the same time slot 𝑡𝑘  =

 𝑡𝑘 + 1 =   …   =  𝑡𝑚  in the control window when concurrent slice request arrivals take place. For two RL 

decision steps 𝑘  and 𝑚  with 𝑘  <  𝑚  it should hold that 𝑡𝑘   ≤ 𝑡𝑚  . Furthermore, slices that were not 

accepted are given as input to the agent at the next time slot if their holding time has not expired. In this 

case, they are considered as new slice requests with properly decreased holding times. 

State: The state of the agent at the RL-decision step 𝑘 is the tuple (𝐴𝐶𝑘,  𝐴𝐵𝑘 ,  𝐴𝑇𝑘 ,  𝑆𝐼𝑘 ,  𝑡𝑘), where 𝐴𝐶𝑘  =

 [𝐴𝐶1(𝑘),   … ,  𝐴𝐶|ℇ|(𝑘),  𝐴𝑅𝐶(𝑘)] , collecting the available capacity of all ECs and of the RC; 𝐴𝐵𝑘   =

 [𝐴𝐵𝐹𝐻,1(𝑘),   … ,  𝐴𝐵𝐹𝐻, |ℇ|(𝑘),  𝐴𝐵𝑀𝐻,1(𝑘),   … ,  𝐴𝐵𝑀𝐻,|ℇ|(𝑘)] denotes the available bandwidth capacity of FH  

and MH links; 𝐴𝑇𝑘   =  [𝐴𝑇𝐸𝐶,1(𝑘),   … ,  𝐴𝑇𝐸𝐶,|ℇ|(𝑘),  𝐴𝑇𝑀𝐻,1(𝑘),   … ,  𝐴𝑇𝑀𝐻,|ℇ|(𝑘)]  collects the remaining 

times that each EC or each MH link will remain active according to the configuration at step 𝑘 , 𝑡𝑘 is the 

current time slot of the control horizon and 𝑆𝐼𝑘 contains necessary information regarding the slice about to 

be processed. In particular, 𝑆𝐼𝑘   =  (𝑝𝑟𝑠,  𝐷𝑚𝑎𝑥,𝑠,  ℎ𝑡𝑠,  𝑐𝑠,1,   … , 𝑐𝑠, 𝑛𝑠
,  𝑏𝑠,   … ,  𝑏𝑠, 𝑛𝑠

) assuming that slice 𝑠 is 

examined at step 𝑘 . 

Action: The agent jointly decides which EC will serve the input slice as well as the number of VNFs of the slice 

placed at the chosen EC. Specifically, the agent has to decide the ID, 𝑒  ∈  {1,   … ,  |ℇ| }, of EC and the number 

of VNFs, 𝑛  ∈  {1,   … ,  𝑛𝑠 }, of the ordered service chain of the slice that will be placed at the chosen EC, i.e., 

the decision can be described as the pair (𝑒,  𝑛).  For ensuring training efficiency, we map the above pair to 

the one-dimensional space by the function 𝑓(𝑒,  𝑛)  =  (𝑒 − 1)  ⋅ 𝑛𝑠  +  𝑛. Therefore, a slice 𝑠 with arrival 

time 𝑡𝑠 and holding time ℎ𝑡𝑠 is given to the agent at time 𝑡𝑘 ≥ 𝑡𝑠 (it may hold that 𝑡𝑘   >  𝑡𝑠 only if the slice 

has been rejected at 𝑡𝑠. Then, the agent takes the decision 𝛼𝑘   ≠ 0 from which we obtain (𝑒𝑘 ,  𝑣𝑘) by the 

inverse mapping of 𝑓(𝑒,  𝑛). The action 𝛼𝑘 encodes rejection of the input slice. Next, the decision variables 

for 𝑡  ∈  {𝑡𝑘,   … ,  𝑡𝑘 + ℎ𝑡𝑠 − 1}  are set as follows: 

𝑥𝑠,𝑓
𝑒𝑘 (𝑡)  ← 1,  ∀𝑓  ∈  {1,   … ,  𝑣𝑘  }, 

𝑦𝑠,𝑓(𝑡)  ← 1,  ∀𝑓 ∈  {𝑣𝑘 + 1, … ,  𝑛𝑠 },  𝑖𝑓 𝑣𝑘 + 1  ≤ 𝑛𝑠, 

𝑋𝑠(𝑡)  ← 1. 

In case of rejection, the slice is not placed, 𝑋𝑠(𝑡𝑘)  ← 0 and its holding time is decreased by 1, i.e., ℎ𝑡𝑠  ←

ℎ𝑡𝑠  −  1. If the new holding time is equal to zero, the slice is rejected, alternatively, the slice will be given as 

input to the agent at the next time slot of the control horizon, 𝑡𝑘+1. 

Reward 

The reward function is defined as the impact of the action to the objective function of the abovedefined 

optimization problem. In particular, if the action is rejection the reward is set equal to 0. Otherwise, for an 

action 𝑎𝑘 that is mapped to (𝑒𝑘 , 𝑣𝑘), applied to slice 𝑠, when the agent is in state 𝑠𝑘, the reward is given by: 

𝑅(𝑠𝑘, 𝑎𝑘) =  {
𝑅𝑒𝑣𝑠 − 𝑃𝐶𝑠,   𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 𝑠 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑘,

0, 𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 𝑠 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑘,
 

 where 𝑃𝐶𝑠 = 𝑃𝐶𝑠
𝐸𝐶 + 𝑃𝐶𝑠

𝑅𝑈−𝐸 + 𝑃𝐶𝑠
𝐸−𝑅, and: 

 𝑅𝑒𝑉𝑠 = 𝑝𝑟𝑠 ⋅ ℎ𝑡𝑠, is the total revenue obtained by the acceptance of slice, 
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 𝑃𝐶𝑠
𝐸𝐶  is the power consumption on the chosen EC: 

𝑃𝐶𝑠
𝐸𝐶 = max{ℎ𝑡𝑠 − 𝐴𝑇𝐸𝐶,𝑒𝑘

(𝑘), 0}𝛾𝑃𝑚𝑎𝑥 + (1 − 𝛾)
∑ 𝑐𝑠,𝑓

𝑣𝑘
𝑓=1

𝐶𝐸𝑒𝑘

𝑃𝑚𝑎𝑥ℎ𝑡𝑠, 

where 𝐴𝑇𝐸𝐶,𝑒𝑘
 is obtained from the current state 𝑠𝑘. 

 𝑃𝐶𝑠
𝐸−𝑅 is the power consumption on FH link: 

𝑃𝐶𝑠
𝑅𝑈−𝐸 =  max{ℎ𝑡𝑠 − 𝐴𝑇𝐸𝐶,𝑒𝑘

(𝑘), 0}𝑃𝑛𝑒𝑡,𝑒
𝑓𝑖𝑥

+ 
𝑏𝑠,1 

𝐶𝐵𝐹,𝑒
𝑃𝑛𝑒𝑡

𝑚𝑎𝑥ℎ𝑡𝑠, 

 𝑃𝐶𝑠
𝐸−𝑅 is the power consumption on the MH link: 

𝑃𝐶𝑠
𝐸−𝑅 = 𝟏{𝑣𝑘+1≤𝑛𝑠}[max{ℎ𝑡𝑠 − 𝐴𝑇𝑀𝐻,𝑒𝑘

(𝑘), 0} 𝑃𝑛𝑒𝑡,𝑒
𝑓𝑖𝑥

+
𝑏𝑠,𝑣𝑘+1

𝐶𝐵𝑀,𝑒
𝑃𝑛𝑒𝑡

𝑚𝑎𝑥ℎ𝑡𝑠], 

 where 𝟏{𝑣𝑘+1≤𝑛𝑠} = 1 if 𝑣𝑘 + 1 ≤ 𝑛𝑠 and 0 otherwise. 

Environment - Transition Function 

 The transitions are defined per RL decision step for each slice request and not per time slot, i.e., more than 

one updates are possible in a single time slot of the control horizon depending on the number of slices that 

have arrived in the corresponding slot. Thus, to clearly explain the dynamics, we define the auxiliary set of 

accepted slices 𝑅𝐴(𝑘). This set is initialized as empty, i.e., 𝑅𝐴(0) ← ∅ and whenever the agent takes an action 

𝑎𝑘 ≠ 0 for a slice 𝑠(𝑘) the set is updated via 𝑅𝐴(𝑘 + 1) ← 𝑅𝐴(𝑘) ∪ {𝑠(𝑘)}, otherwise 𝑅𝐴(𝑘 + 1) = 𝑅𝐴(𝑘). 

Firstly, the slice information is updated with the information of the next slice in the queue, which is 

considered a stochastic transition. Regarding the network state, the computing and bandwidth capacities are 

updated via the equations 𝐴𝐶𝑒(𝑘) = 𝐶𝐸𝑘 − 𝐶𝑒
𝑘(𝑡𝑘), 𝐴𝐵𝐹𝐻,𝑒(𝑘) = 𝐶𝐵𝐹,𝑒 − 𝐵𝐹𝐻,𝑒

𝑘 (𝑡𝑘), 𝐴𝐵𝑀𝐻,𝑒(𝑘) = 𝐶𝐵𝑀,𝐸, 

where 𝐶𝑒
𝑘(𝑡𝑘), 𝐵𝐹𝐻,𝑒

𝑘 (𝑡𝑘), and 𝐵𝑀𝐻,𝑒
𝑘 (𝑡𝑘) can be computed via the corresponding equations defined in the 

Problem Formulation section, by using the set 𝑅𝐴(𝑘), instead of 𝑅(𝑡𝑘), to reflect the temporary, in-time-slot, 

configuration. Moreover, the active time can be calculated by the equations 𝐴𝑇𝐸𝐶,𝑒(𝑘) =

 ∑ max
𝑠∈𝑅𝐴(𝑘)

{𝑥𝑠,1𝑒(𝜏)}𝐻−1
𝜏=𝑡𝑘

 and 𝐴𝑇𝑀𝐻,𝑒(𝑘) =  ∑ max
𝑠∈𝑅𝐴(𝑘)

{𝑥𝑠,1𝑒(𝜏) ⋅ 𝑦𝑠,𝑛𝑠
(𝜏)}𝐻−1

𝜏=𝑡𝑘
. 

Safety - Constraints Handling 

All the applied decisions should respect the hard constraints of our problem. We ensure constraint 

satisfaction by applying action masking to violating actions [4]. Action masking is chosen as it is suitable for 

discrete action spaces and in the problem at hand, we can deterministically determine if an action violates a 

constraint. 

RL-based Solution 

We solve the previous MDP with the PPO algorithm. PPO is an on-policy, model-free RL algorithm and was 

chosen because it is aligned with the discrete action space like in our problem, requires limited 

hyperparameter tuning and it is compatible with the action masking mechanism. 

4.3.7 Evaluation Results (RL) 

Evaluation setting: 
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For the implementation of the simulation environment, we use Python version 3.10. The RL-based decision 

making is based on the open-source implementation of the PPO algorithm with action masking in the Python 

library StableBaselines3. The environment is modeled with the Gymnasium framework. Finally, the Gurobi 

solver and particularly, the gurobipy Python package is employed to solve offline the optimization problem 

for comparisons. In Table 7, we present the network infrastructure and slices parameters used for the 

simulations. Two types of slices are considered in our evaluations, namely, URLLC and eMBB. 

Table 7. Simulation Parameters. 

 

For the comparative results, two distinct baseline methods are employed. The first is the “Oracle” method, 

in which the above-defined optimization problem is solved under the unrealistic assumption that the future 

slice requests are known on beforehand and provides the optimal solution of the problem. The second 

baseline denoted by “RL-ST” is an RL agent similar to the one developed in the work of [6]. Contrary to our 

proposed RL-agent, it does not optimize slice splitting, but, instead, considers a static splitting rule chosen 

via experimentation. In particular, (i) URLLC slices are always split at their middle VNF and (ii) for the eMBB 

slices, only their second VNF is placed at an EC/DU. 

Evaluation metrics: 

The evaluation metrics for the performance assessment are: 

1. Acceptance ratio 

2. Power Efficiency 

3. Objective Value 

We have already defined acceptance ratio and power efficiency. Following we define the objective value 

metric. 

Objective Value: It represents the total gain achieved by the agent at every step. It is defined as the revenue 

obtained from the actual slice request realization, reduced by the power consumption incurred in the 

resulting network state. This metric reflects the trade-off between minimizing power consumption and 

maximizing overall revenue, either by increasing the acceptance ratio or by prioritizing slice requests with 

higher priority. 

It is worth mentioning that normalization of objective metrics is performed prior to simulations to mitigate 

disparities arising from the diverse scales of objective-related values. Two set of experiments are conducted 

to analyze, evaluate and compare the proposed method, which are detailed in the following subsections. 
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Discussion on the Results: 

In the first set of experiments, we create 3 datasets with varying arrival rates per time slot in the control 

horizon. 

 

(a) Average number of arrivals.   (b) Average number of active slices. 

Figure 4-35: Dataset information. 

Specifically, arrival patterns are generated according to three distinct distributions, as visualized in Figure 

4-35a: Normal distribution, 𝑁(
𝐻

2
− 1, 0.9), an Exponential distribution, 𝐸𝑥𝑝(

4

𝐻
), and a Beta distribution, 

𝐵𝑒𝑡𝑎(𝐻 − 2,
𝐻

6
), rescaled to the horizon interval and grouped by time slot. The number of requests per 

scenario is chosen uniformly from the set {15,16, … , 20}. For each distribution, 1, 000 scenarios are used for 

the training dataset and 10 for the test set. This experiment targets to evaluate the agent’s learning ability 

by testing its behavior on diverse slice arrival distributions. 

To begin with, we study the convergence of the training by performing 5 training instances, with different 

seeds, on the Dataset 1 (Figure 4-35). The moving average of the cumulative reward per episode is plotted in 

Figure 4-36, where we observe that after around 10, 000 episodes convergence is achieved. Similar behavior 

is obtained for the other datasets. 

Furthermore, we train 3 models on each dataset of Figure 49. Their achieved average objective value as well 

as the objective value of the “Oracle” baseline method are plotted in Figure 4-37. In particular, Agent 1 

represents the average of the models trained on Dataset 1, Agent 2 on Dataset 2, and Agent 3 on Dataset 3. 

In Figure 4-37(a), which corresponds to a test set sampled by the distribution of Dataset 1, we observe that 

Agent 1, which is trained on a similar dataset, performs slightly better than the other agents. In the same 

sense, Agent 2 performs slightly better than the other agents on a test set sampled by the distribution used 

for its training as depicted in Figure 4-37(b) and respectively, Agent 3 is the best performing agent for the 

test set corresponding to the distribution used for its training in Figure 4-37(c). 
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Figure 4-36: Cumulative reward evolution during training. 

 

(a) Cumulative average objective value on test dataset 1.   (b) Cumulative average objective value on test dataset 2. 

 

(c) Cumulative average objective value on test dataset 3. 

Figure 4-37: Comparative evaluation under varying arrival patterns. 

 

It is worth mentioning that the best performing agent for all datasets achieves an objective value close to the 

optimal given by the oracle. Specifically, the best performing agent achieves at least 92.5% of the optimal 

value. Furthermore, all agents perform well in all datasets, even on those that deviate from what they have 

been trained on, which indicates the good generalization possibilities of our method. 

The second set of experiments is designed to assess the agent’s ability to take the optimal splitting decision. 

To this end, the agent is compared against the “RL-ST” method, in two test scenarios with varying total 
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number of requests. This comparison evaluates the adaptability and state-awareness of the proposed RL 

method. In the second experiment, we train 3 models based on our method and 3 models according to the 

“RL-ST” baseline to assess the importance of the dynamic splitting of slices. The Dataset 2 was used for each 

training instance. We create two test sets: the low load set, which corresponds to the distribution of Dataset 

2, and the high load set, which follows the arrival patterns of Dataset 2, but the total number of slices is 

sampled from a discrete uniform distribution over the set {20, 21, … , 30}. 

 

 

(a) Cumulative average acceptance ratio.   (b) Cumulative average objective value.

 

(c) Cumulative average power efficiency. 

Figure 4-38: Low load conditions. 

 

In Figure 4-38(a), we can observe that the static splitting method leads to a high number of rejections, in 

contrast to our method that has the ability to adjust the load between ECs and RC to achieve higher 

acceptance ratio. The Figure 4-38(b), (c) show that the lack of adaptability of the “RL-ST” method leads to 

deteriorated performance in the remaining key metrics as well. Specifically, our method shows performance 

gains due to dynamic splitting on average 8.14% and at maximum 16.34% with respect to the objective value 

metric, and on average 12.06% and at maximum 39.02% with respect to the power efficiency metric. 
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(a) Cumulative average acceptance ratio.   (b) Cumulative average objective value.

 

(c) Cumulative average power efficiency. 

Figure 4-39: High load conditions. 

 

Figure 4-40: Slice splitting statistics. 

 

The advantages of our method over the “RL-ST” method are more evident in the case of higher demand. In 

Figure 4-39(b), we observe that the objective value achieved by the “RL-ST” method is significantly lower 

than our agent, whereas our method outperforms the static splitting method also with respect to the other 

two assessed metrics (Figure 4-39(a), (c)). In particular, the objective value achieved by our method is on 

average 12.81% higher, and the average power efficiency improvement is 4.67%. In addition, the maximum 

observed improvement on this test dataset is 34.70% concerning the objective value and 20.86% for the 

power efficiency metric. In Figure 4-40, the statistics related to splitting are presented. Specifically, the 
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frequency of each splitting decision across all scenarios of the second set of simulations is plotted. We 

observe that the agent tends to place only a single VNF at the EC for most slices, however, in many cases it 

places more than one, even the entire slice, to achieve better performance. 

4.4 Application Graph Deployment across Multiple Providers 

4.4.1 Theoretical Foundation 

In this subsection, we outline the theoretical foundations of the mechanisms developed within the 

Experiential Network Intelligence Function (ENIF), designed as a component for intent lifecycle management, 

presented analytically in [27]. These mechanisms are detailed in D3.4, where ENIF processes slice intents 

expressed as application graphs provided by the Business Support System Function (BSSF). In particular, we 

present the Application Graph Partitioning mechanism and the Inter-Provider Deployment Plan 

mechanism, both forming part of ENIF’s Intent Provision functionality. Finally, we showcase the results of the 

experimental evaluation of the intent lifecycle management framework across multiple providers leveraging 

the simulation kit, as described in D2.4. 

Application Graph Partitioning 

A graph partitioning mechanism is developed to address the problem of deploying application graphs across 

multiple providers [27]; in this problem formulation, each application is modelled as (𝐺𝑎 , 𝐿𝑎) . 𝐺𝑎  is a 

connected, labelled, undirected graph (𝑉𝑎  , 𝐸𝑎); 𝑉𝑎 is the set of the application components, and 𝐸𝑎 is the set 

of relationships between them. Each application component 𝑢 ∈ 𝑉𝑎 has a label [𝑐𝑢
𝐿 , 𝑐𝑢

𝐻] denoting the CPU 

demand range; each relationship {𝑢, 𝑣} ∈ 𝐸𝑎 is labelled by [𝑏{𝑢,𝑣}
𝐿 , 𝑏{𝑢,𝑣}

𝐻 ], denoting the bandwidth demand 

range. 𝐿𝑎 is a global label that characterizes the entire graph and models the application objective. In the 

current work, the application objective is high performance or energy efficiency. Let 𝑃 = {1, … , 𝑝} be the set 

of available providers. Every provider is associated with an infrastructure; this is also modelled as an 

undirected, labelled connected graph 𝐺𝑠
𝑝

= (𝑉𝑠
𝑝

, 𝐸𝑠
𝑝

) , with {𝐶𝑖}
𝑖∈𝑉𝑠

𝑝 , {𝐵{𝑖,𝑗}}
{𝑖,𝑗}∈𝐸𝑠

𝑝  denoting the CPU 

capacity on computing nodes and bandwidth on links, respectively. Additional important parameters 

associated with each provider include the degradation factor 𝑑𝑝 (this factor expresses collective provider 

profiling and its real potential to maintain promised resources reservations, increasing as the percentage of 

intent violations increases), the energy consumption due to the consumption of CPU resources 𝑒𝑝
𝐶𝑃𝑈, the 

intra-provider energy consumption due to the produced network traffic 𝑒𝑝
𝐵𝑊, and the inter-provider energy 

consumption due to the produced network traffic 𝑒𝑝,𝑝′
𝐵𝑊 . 

All valid graph partitions of the application graph are generated for each incoming request. For each valid 

partition, all possible placements are tested. A candidate placement solution assigns the partition sub-graphs 

to the available providers. The selected providers are called to suggest a deployment plan for the assigned 

subparts arising from the solution of the optimization problem described below. In case of infeasibilities with 

respect to the providers’ available resources, this candidate solution is rejected, otherwise an offering 𝑂 is 

being formed based on the allocated CPU and bandwidth resources. Let {𝑦𝑢,𝑝}
𝑢∈𝑉𝑎,𝑝∈𝑃

 be an allocation 

matrix where 𝑦𝑢,𝑝  is equal to 1 if the component 𝑢 is deployed in the provider 𝑝, otherwise 0. Similarly, 

{𝑐𝑝𝑢,𝑝}
𝑢∈𝑉𝑎,𝑝∈𝑃

 and {𝑏𝑤{𝑢,𝑣},𝑝}
{𝑢,𝑣}∈𝐸𝑎,𝑝∈𝑃

 are defined to formulate the CPU and bandwidth allocated to a 

provider 𝑝 for each application component and relationship, respectively. The offering varies according to 

the application objective. 
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 Performance: 

𝑂 =  ∑ ∑ 𝑐𝑝𝑢,𝑝(1 − 𝑑𝑝)

𝑝∈𝑃𝑢∈𝑉𝑎

+ ∑ ∑ 𝑏𝑤{𝑢,𝑣},𝑝

𝑝∈𝑃{𝑢,𝑣}∈𝐸𝑎

+ ∑ ∑ 𝑦𝑢,𝑝 ∑ 𝑦𝑢,𝑝′𝑏{𝑢,𝑣}
𝐻

𝑃

𝑝′=𝑝+1

.

𝑃

𝑝=1{𝑢,𝑣}∈𝐸𝑎

 

 Energy efficiency: 

𝑂 =  ∑ ∑ 𝑐𝑝𝑢,𝑝(1 − 𝑑𝑝)𝑒𝑝
𝐶𝑃𝑈

𝑝∈𝑃𝑢∈𝑉𝑎

+ ∑ ∑ 𝑏𝑤{𝑢,𝑣},𝑝𝑒𝑝
𝐵𝑊

𝑝∈𝑃{𝑢,𝑣}∈𝐸𝑎

+ ∑ ∑ 𝑦𝑢,𝑝 ∑ 𝑦𝑢,𝑝′𝑏{𝑢,𝑣}
𝐻 𝑒𝑝,𝑝′

𝐵𝑊

𝑃

𝑝′=𝑝+1

.

𝑃

𝑝=1{𝑢,𝑣}∈𝐸𝑎

 

 

It is important to note that, for the performance-related objective, when components 𝑢 and 𝑣 are co-located 

on the same physical node within a provider, the bandwidth term 𝑏𝑤{𝑢,𝑣},𝑝 is set equal to 𝑏{𝑢,𝑣}
𝐻 . Under the 

assumption of infinite bandwidth on inter-provider links, the bandwidth allocated between two interacting 

components corresponds to the upper bound when optimizing for performance and to the lower bound 

when optimizing for energy efficiency. Each application optimizes 𝑂 over all valid graph partitions over all 

candidate placements. Besides the initial deployment, this mechanism is triggered by Control Loop 3 during 

the refinement of a single component and relocation to an alternative provider. 

Intra-Provider Deployment Plan 

For a single provider infrastructure, the provider 𝑝 ∈  𝑃 must solve an online placement and resource 

allocation problem [27]. An indicative way to formulate the problem is the following. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞  ∑ ∑ (𝑥𝑢
𝑖 ⋅ 𝑐𝑢

𝐻 − 𝑐𝑢
𝑖 )

𝑖∈𝑉𝑠
𝑝𝑢∈𝑉𝑎

+ ∑ (

{𝑢,𝑣}∈𝐸𝑎

𝑏{𝑢,𝑣}
𝐻 − 𝑏̂{𝑢,𝑣}) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 (4.4.2) − (4.4.15)           (4.4.1𝑎) 

𝑥𝑢
𝑖 , 𝑓{𝑢,𝑣}

𝑖,𝑗
, 𝑓{𝑢,𝑣}

𝑗,𝑖
∈ {0,1},           (4.4.1𝑏) 

𝑐𝑢
𝑖 , 𝑏{𝑢,𝑣}

(𝑖,𝑗)
, 𝑏{𝑢,𝑣}

(𝑗,𝑖)
, 𝑏̂{𝑢,𝑣} ∈  ℕ0,        (4.4.1. 𝑐) 

∀𝑢 ∈ 𝑉𝑎 , ∀𝑖 ∈ 𝑉𝑠
𝑝

, ∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

.      (4.4.1. 𝑑) 

The placement of application components is described by binary variables 𝑥𝑢
𝑖  , which indicate if a component 

𝑢 is assigned to a computing node 𝑖. Each component is assigned to exactly one node. 

∑ 𝑥𝑢
𝑖 = 1, ∀𝑢 ∈ 𝑉𝑎.          (4.4.2)

𝑖∈𝑉𝑠
𝑝

 

We define constraints to ensure that the assigned components will not violate the remaining CPU resources 

of a computing node. In contrast, the allocated resources remain within the acceptable range of the 

components’ requests. 

∑ 𝑐𝑢
𝑖 ≤ 𝐶𝑖,    ∀𝑖 ∈ 𝑉𝑠

𝑝
,       (4.4.3)

   
𝑢∈𝑉𝑎

 

𝑥𝑢
𝑖 ⋅ 𝑐𝑢

𝐿 ≤ 𝑐𝑢
𝑖 ≤ 𝑥𝑢

𝑖 ⋅ 𝑐𝑢
𝐻 ,    ∀𝑢 ∈ 𝑉𝑎 , ∀𝑖 ∈ 𝑉𝑠

𝑝
       (4.4.4) 
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We establish routing variables 𝑓{𝑢,𝑣}
(𝑖,𝑗)

 , 𝑓{𝑢,𝑣}
(𝑗,𝑖)

 to indicate whether an interaction {𝑢, 𝑣} is routed through a 

specific link {𝑖, 𝑗}. Although links are modeled as undirected in each provider’s infrastructure, in our problem 

formulation, we distinguish between the two possible directions, represented as directed links (𝑖, 𝑗) and 

(𝑗, 𝑖). These directional links share the same underlying physical resources, particularly bandwidth capacity. 

We impose the constraint that for each such pair, at most one direction can be selected. To ensure proper 

path construction and prevent the creation of loops, we augment the initial graph 𝐺𝑠
𝑝

 by introducing a source 

node 𝑠 that initiates all flows {𝑢, 𝑣}, and a destination node d where these flows terminate. Each node 𝑖 ∈

𝑉𝑠
𝑝

 is connected to the source node 𝑠 via a directed link (𝑠, 𝑖), and to the destination node 𝑑 via a directed 

link (𝑖, 𝑑), both of which are assumed to have infinite bandwidth. In the following, we establish routing 

constraints to capture the well-known flow conservation and unsplittable flow restrictions, and constraints 

to prevent loops in a path. It is important to note that 𝛿−(𝑖) = { (𝑗, 𝑖) ∣∣ {𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

} denotes the incoming 

links of a node 𝑖 ∈ 𝑉𝑠
𝑝

, assuming that the initial undirected graph 𝐺𝑠
𝑝

 is treated as a directed graph where 

each undirected link is replaced by two directed links in opposite directions. Similarly,  𝛿+(𝑖) =

{ (𝑖, 𝑗) ∣∣ {𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

} denotes the set of outgoing links from node 𝑖. 

∑ 𝑓{𝑢,𝑣}
(𝑖,𝑗)

𝑗∈𝛿+(𝑖)∪{𝑑}

− ∑ 𝑓{𝑢,𝑣}
(𝑗,𝑖)

= 0,     (4.4.5)

𝑗∈𝛿−(𝑖)∪{𝑠}

 

∑ 𝑓{𝑢,𝑣}
(𝑖,𝑗)

≤ 1,        (4.4.6)

𝑗∈𝛿+(𝑖)∪{𝑑}

 

∑ 𝑓{𝑢,𝑣}
(𝑗,𝑖)

≤ 1,        (4.4.7)

𝑗∈𝛿−(𝑖)∪{𝑠}

 

𝑓{𝑢,𝑣}
(𝑠,𝑖)

= 𝑥𝑢
𝑖 ,      (4.4.8) 

𝑓{𝑢,𝑣}
(𝑖,𝑑)

= 𝑥𝑣
𝑖 , (4.4.9)   

∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀𝑖 ∈ 𝑉𝑠
𝑝

 

Similarly to computing nodes, we define capacity constraints for the bandwidth resources of links. 

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑗)

+ 𝑏{𝑢,𝑣}
(𝑗,𝑖)

≤ 𝐵{𝑖,𝑗},   ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

,      (4.4.10),

{𝑢,𝑣}∈𝐸𝑎

 

𝑓{𝑢,𝑣}
(𝑖,𝑗)

⋅ 𝑏{𝑢,𝑣}
𝐿 ≤ 𝑏{𝑢,𝑣}

(𝑖,𝑗)
≤ 𝑓{𝑢,𝑣}

(𝑖,𝑗)
⋅ 𝑏{𝑢,𝑣}

𝐻 ,     (4.4.11) 

𝑓{𝑢,𝑣}
(𝑗,𝑖)

⋅ 𝑏{𝑢,𝑣}
𝐿 ≤ 𝑏{𝑢,𝑣}

(𝑗,𝑖)
≤ 𝑓{𝑢,𝑣}

(𝑗,𝑖)
⋅ 𝑏{𝑢,𝑣}

𝐻 ,     (4.4.12) 

∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

∪ { (𝑠, 𝑖) ∣∣ 𝑖 ∈ 𝑉𝑠
𝑝

} ∪ { (𝑖, 𝑑) ∣∣ 𝑖 ∈ 𝑉𝑠
𝑝

} 

To guarantee the same bandwidth allocation at each physical link of a formed path, we introduce new integer 

variables  𝑏̂{𝑢,𝑣}  that denote the bandwidth assigned for the interaction {𝑢, 𝑣}  and add the following 

bandwidth-conservation constraints. 

∑ 𝑏{𝑢,𝑣}
(𝑠,𝑖)

= 𝑏̂{𝑢,𝑣},       (4.4.13)

𝑖∈𝑉𝑠
𝑝

 

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑑)

= 𝑏̂{𝑢,𝑣},       (4.4.14)

𝑖∈𝑉𝑠
𝑝

 

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑗)

𝑗∈𝛿+(𝑖)∪{𝑑}

− ∑ 𝑏{𝑢,𝑣}
(𝑗,𝑖)

= 0

𝑗∈𝛿−(𝑖)∪{𝑠}

,      (4.4.15) 

∀{𝑢, 𝑣} ∈ 𝑉𝑎, ∀ 𝑖 ∈ 𝑉𝑠
𝑝
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4.4.2 Experimental Evaluation 

As described in detail in D2.4, the simulation kit captures the creation of application graph services, their 

deployment on the multi-provider infrastructure and the continuous lifecycle management of their intent. The 

management framework introduces three control loops, with the first one performing semantic and syntactic 

validation of the client intent before the initial deployment, the second control loop models short-term intra-

provider orchestration actions based on the well-being of the application component and the third control loop 

implements a long term intent monitoring, proposing intent refinements and inter-provider re-deployments as 

well as assessing the quality of each provider, useful information for subsequent deployments. 

For the experimental evaluation, we assume that each application request has an aggregate workload profile 

(which is unknown to the control loops) of three different types: Variable, Bursty and Uniform. Apart from 

its type, the aggregate workload also has one out of three volume levels (Low, Medium, High) [27]. The 

aggregate workload is modelled as a Markov Modulated Poisson Process (MMPP), so the type of the 

workload determines its transition probability matrix of the next state of the internal Markov chain, and the 

volume sets the Poisson rate’s values, based on which the aggregate workload object generates its value 

(following Poisson distribution) for the current slot. Furthermore, each component has also a Type (Type1, 

Type2, Type3) as part of the user intent which classifies the component either as CORE or SUPPORT. We 

assume that Type1 components are CORE and the rest are SUPPORT. This distinction is necessary for 

capturing the importance of each component in the application graph since CORE components are 

considered to be more resource demanding and in general require more CPU resources when compared with 

their SUPPORT counterparts. The simulation kit handles CPU and Bandwidth resources and their amount is 

declared through three distinct ranges (LOW, MEDIUM, HIGH), while only the CPU resource has a dynamic 

behavior. At each timeslot the generated CPU aggregate workload is distributed at the application 

components based on their own internal state and Type, and by translating through a linear function, we 

produce the final CPU consumption for each component for the timeslot. Concerning the infrastructure 

providers, each provider has a type based on which its monetization and resource quality (reduced due to 

oversubscription of the shared physical resources) are determined. The corrective actions of the three 

control loops are based on the implementation provided in MECC paper. 

Two deployment scenarios are examined, the first focusing on an intent with high performance objective, 

identified by index P, and the second on an intent with high energy efficiency objective, identified by index 

E. The total number of components per application graph is considered to be up to four, while the 

infrastructure of each provider may reach up to ten nodes. Three infrastructure providers are considered, 

each of a different type; Performance-Oriented, Moderate-Cost, and Energy-Efficient. The three types offer 

high to low quality resources and high to low cost policies per CPU/bandwidth unit, with the inter-provider 

communication cost being higher that the intra-provider communication. Requests for application 

deployment, described by an intent of type P or type E, continuously arrive in the system.  

We compare the results achieved based on a Legacy Request Management (LRM) approach where no intent 

control loop is activated but only a mechanism that, during application runtime, initial resources reservations 

are attempted to be maintained at all times within the provider (a common alternative to intent control loop 

2 that does not require applications to expose information to the provider), and the Intent Lifecycle 

Management (ILM) approaches where various control loops are activated. Six scenarios are considered, with 

each one activating different control loops, as follows: (i) LRM method (Legacy), (ii) LRM with ILM control 

loop 1 (Loop 1), (iii) LRM with ILM control loop 3 (Loop 3), (iv) LRM with ILM control loop 1 and 3 (Loop 1 & 3), 

(v) LRM with ILM control loop 2 (Loop 2), and (vi) all ILM control loops (All Loops). When control loop 2 is 

activated, violations are considered periodically within a short time interval (equal to 100 time slots) and actions 

are taken at the end of each period. The same short period is considered in the Legacy case as well. In the case 
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of an activated loop 3, actions are taken after considering violations (as well as actual provided resources) for a 

longer period (every 1000 slots). Loop 1 takes initial corrective actions on the intent definition based on the 

predicted application profile. Loop 2 makes temporal adjustments within the provider to reduce violations 

according to the short-term application profile. Loop 3 contributes to building the actual application profile and 

the provider profile, driving associated actions; reconsidering intent definition and intent placement 

considering actual application demands and actual resources provided. The fundamental difference between 

Loop 2 and the considered Legacy approach is that Loop 2 uses information about violations exposed by the 

application, where in the Legacy case there is no insight on the application's internal operation but only an 

external view of the resources usage and the effort is to maintain initial reservations. 

The metrics used for evaluation include the total intent violations and the percentage of intents with 

violations to the accepted intents for both type P and E intents, the cost incurred by deploying the 

applications across the providers in terms of CPU and bandwidth, and the deployed components per 

provider. Intent violation occurs for request i at timeslot t when at least one component’s CPU consumption 

is greater than the effective CPU (the actual CPU offered to the component by the provider as a result of the 

oversubscription). For the evaluation of the proposed framework, we examined 10 sets of providers and 5 

sets of requests per provider set, thus conducting 50 experiments in total and presenting the average of the 

aforementioned metrics across all experiments. 

In Figure 4-41, we show the total intent violations for both type P and type E intents. The LRM scenario is 

shown to have the poorest performance in reducing intent violations in both cases. In the type P intent 

(Figure 4-41(a)), significant improvement occurs in case of activation of Loop 2, since it enables dynamic 

resource management. Loop 1 also achieves remarkable performance by successfully profiling requests to 

acquire adequate resources for their execution at initial deployment. Loop 3 reduces violations on a smaller 

scale due to larger activation windows but if coupled with Loop 1, they outperform both Loop 1 and Loop 2 

scenarios. When all loops are activated, the system achieves its best performance, as Loop 1 ensures 

sufficient resources for initial deployment, Loop 2 takes fast corrective actions for resource increase and Loop 

3 guides initial and re-placement of type P intents at higher quality providers. In case of type E intents, a 

similar behavior can be observed (Figure 4-41(b)) with Loop 3 prioritizing migrations to lower cost providers. 

Loops 1 & 2 prove to be the most effective loops by prioritizing performance maximization and share 

common implementation across intent types, explaining the similar pattern in the scenarios behavior. 

 

(a) High performance intent 

 

(b) Energy efficient intent 

Figure 4-41: Intent Violations per time slot [27]. 
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In Table 8, we present the amount of accepted requests for each scenario and intent type. It is clear that the LRM  

and Loop 3 approaches perform the best in terms of acceptance while Loops 1 & 2 exhibit the worst acceptance 

capability as both loops rely on greedy resource increase to reduce intent violations which leads to fast depletion 

of available resources for new requests. On the other hand, Loop 3, after examining an intent's workload pattern 

for a long time-window, it may decide to lower resources thus ensuring cost reduction and better provider 

availability without sacrificing performance. The All Loops scenario balances the aforementioned approaches, 

showcasing the trade-off between over-provisioning and provider acceptance ratio. 

Table 8. Accepted requests per scenario and intent type [27]. 

 
 

To enable a direct comparison of the lifecycle scenarios, we express their intent violations at timeslot t as a 

percentage of the total requests they have accepted up to that point. The resulting plots (Figure 4-42) confirm 

the insights drawn from the raw violation counts and clearly show that the All Loops scenario consistently 

achieves the highest quality in intent deployments. As anticipated, once the scenarios converge, the 

percentages for type P intents are lower than those for type E intents, illustrating the balance between 

guaranteeing performance and reducing cost. 

 

(a) High performance intent 

 

(b) Energy efficient intent 

Figure 4-42: Intent Violation percentage per time slot [27]. 

In Figure 4-43, the CPU cost (serving as an indicator of energy usage) is notably lower for type E intents, 

demonstrating the effectiveness of the control loops and the initial deployment strategy under this intent 

directive. For type P requests, All Loops exhibits the highest energy consumption, which contrasts with the 

behavior observed for type E intents, where it aligns well with the goal of minimizing cost. Overall, Loop 3 is 

the primary driver of cost optimization, as it is the only control loop that accounts for the intent directive, 

resulting in higher consumption in the High-Performance context and the lowest consumption in the Energy-

Efficient context. 
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(a) High performance intent 

 

(b) Energy efficient intent 

Figure 4-43: CPU cost (× ) per time slot [27]. 

In Figure 4-44, we present the bandwidth cost for each scenario. For type P intents, LRM, Loop 2 and Loop 1 

present the highest bandwidth cost as their initial placement is completely random and does not consider 

provider cost. The scenarios that have Loop 3 activated will perform migrations that will gather many 

components that where mistakenly placed on lower cost providers on the higher quality providers, thus 

reducing their inter-provider communication. For type E intents, the bandwidth cost is significantly reduced 

when compared to the type P intents, as the framework prioritizes placement on the lower cost provider and 

ideally on the same node. When migrations have to take place (Loop 2 & 3) the deployment manager often 

changes the placement node of the component, thus inflicting intra-provider communication cost and in 

rarer cases inter-provider cost. 

 

(a) High performance intent 

 

(b) Energy efficient intent 

Figure 4-44: Bandwidth cost (× ) per time slot [27]. 

In Figure 4-45, we show the evolution of the number of components deployed per type of provider over time 

for the All Loops scenario. For type P intents, before the Loop 3 activation of the first accepted request 

(around 1000 slots), deployment manager assumes high quality across all providers which constitutes the 

placement decision a random choice when the same amount of resource offering occurs. This will result in 

many type P components being placed on the Energy Efficient provider, where their performance will fall 

short. When Loop 3 updates Deployment Manager knowledge about the degradation factor of each provider, 
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we can observe intense inter-provider migration towards Performance-Oriented Provider. For type E intents, 

the deployment manager is heavily inclined in placing all components to the cheaper provider if possible, which 

rapidly increases the number of components of the Energy Efficient provider, rapidly depleting its resources, 

and repeating the process with the next available low cost provider, in this case the Moderate-cost one. 

 

(a) High performance intent 

 

(b) Energy efficient intent 

Figure 4-45: Deployed components per provider over time [27]. 

Overall, control Loops 1 & 2 appear to be the most effective when considering intent satisfaction, while loop 

3 successfully captures the client's intent and ensures performance or cost reduction. Loop 1 relies on 

successful application profiling to efficiently suggest intent refinements. However, when this profiling is 

coarse, greedy and rule-based it can lead to over or under provisioning of resources. Loop 2 on the other 

hand, is a reliable mechanism that can make short-term resource adjustments based on metrics exposed to 

the provider about the "well-being" of the application, ensuring continuous satisfaction, with the trade-off 

of increasing energy consumption. Finally, Loop 3 can provide higher quality intent suggestions as well as 

metrics about the quality of the provider, optimizing energy consumption ideally without sacrificing 

performance. The whole experimentation setup, results and discussion is described in [27]. 
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 Green Observability and Profiling in the 5/6G Continuum 

The overall 6Green observability framework is depicted in Figure 5-1. Metrics for services executed over 

on-premise or public infrastructures are collected through a classical Time Series Database (TSDB) solution 

and customized probes. Policies are used to reconcile information presented to the framework, either to 

extract KPIs from infrastructures metrics, either to simulate resources usage for external web services. 

Resulting information is provided to analytics modules and dashboards. 

 

Figure 5-1: 6Green observability framework architecture. 

5.1 Data Fusion Mechanisms 

We consider data fusion of observability signals that can be classified into metrics, logs and traces (see 

Figure 5-2). Metrics are numerical data that capture the state of a system at a particular time or over a period. 

They serve as basic information for quick response and decision-making within an orchestration system, such 

as rule-based mechanisms for auto-scaling based on predefined thresholds. These metrics can take various 

forms, including counters (e.g., counting incoming HTTP requests), gauges (e.g., measuring the current depth 

of a queue), or histograms (e.g., depicting the duration of a request). Examples of commonly monitored 

metrics encompass resource usage (like CPU or memory usage), traffic volume (such as incoming or outgoing 

traffic per second), and the number of requests handled (e.g., HTTP requests served per second). Monitoring 

components within cloud and edge computing orchestration platforms typically provide access to a wide 

array of such metrics [28]. 

Logs are structured records of individual events, presented in a textual format that humans can readily 

understand. They typically detail usage patterns, events, activities, and operations within an orchestration 

system, such as application debug or error messages. By aggregating data from multiple logs, valuable 

insights into specific situations or events can be gleaned. Third-party tools, compatible with cloud and edge 

computing orchestration platforms, often facilitate access to these logs [28]. 

A distributed trace encompasses a sequence of operations that represent a unique transaction managed by 

an application. Consequently, these traces can be correlated with a request's scope. Each transaction or 

request comprises a series of operations spanning across the microservices of the application. By analyzing 

distributed traces, we can gain better insights into the events occurring during a distributed transaction and 

pinpoint any delays or bottlenecks within the overall process. Common examples of insights provided by 
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distributed tracing include latencies in software execution within microservices, interactions between 

microservices, and end-to-end latencies for fulfilling specific requests. Third-party tools, with varying degrees 

of integration and interoperability, typically provide access to distributed tracing information within cloud 

and edge computing orchestration platforms [28]. 

Observability involves integrating various types of signals, including metrics, logs, and traces. When deciding 

which signals to monitor, it's important to balance the richness of information available against 

considerations of performance and complexity. Once the appropriate set of signals has been identified, 

collecting relevant information relies on properly instrumenting the deployed software. 

 

Figure 5-2: Classification of signals into metrics, logs and traces [28]. 

In order for a data model to be able to support orchestration in the compute continuum, it needs to support 2 

main aspects: 

 a representation of the resources, i.e., a model of the computing and the network infrastructure, 

 an application graph representation, modelling designed service communication patterns and data 

transfers. 

Taking into consideration a multi-cluster infrastructure, the main entities constituting the computing 

representation should include the cluster and the corresponding physical or virtual computing nodes of each 

cluster. The network representation is described as a graph of network connections (links) between network 

nodes (e.g. routers/switches), while it is also crucial to provide support for virtual links created by network 

controllers (e.g. SDN) to make network performance guarantees (Figure 5-3). Runtime information of 

applications placed in the continuum is important to be registered close to the infrastructure for supporting 

orchestration actions. Specifically, a deployment identifying the placement cluster and replication factor of 

each service represents the application instance, while an individual runtime instance records a replica’s 

resource utilization and state. 
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Figure 5-3: Data representation. 

A detailed application description is important for identifying its underlying complexity and its connectivity 

characteristics that can be utilized to optimize its performance (Figure 5-4). An application graph is defined 

as a network of services interacting with each other through their endpoints. For one service to access 

another, a service call (link) is made having a specific payload size. A sequence of service calls makes up a 

directed acyclic graph (DAG), a workflow executing a certain functionality. The service’s runtime information 

is recorded in the infrastructure model as discussed above, so each service maps to a deployment. 

 

 

Figure 5-4: Application/Service representation. 
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5.2 Profiling Mechanisms 

A recent and comprehensive study published by CNIT [29], has clearly summarized the profiling power 

consumption most used approaches in the following Figure 5-5, where we schematically see the most 

interesting aspects: 

 Workload characterization and instrumentation. 

 Resource instrumentation. 

 Resource Specific workloads. 

 Direct power measurements. 

 Temperature (e.g., CPU package temp, Fan Speed etc.). 

 

Figure 5-5: Profiling Power Consumption. 

5.2.1 The Rating Operator Tool 

The Rating Operator serves as a Kubernetes application. Operators can be considered as extensions to the 

microservices hypervisor. The Rating Operator follows this approach to extend the native API. Functionally, 

it enables the transformation of metrics into customizable Key Performance Indicators (KPIs) and provides 

interfaces for their use in monitoring, supervision or other purposes. This multi-tenant, configurable, and 

lightweight operator addresses users’ rating needs. Our involvement in the 6Green Project focused on enhancing 
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the tool's ability to model metric transformation rules as units, previously implemented directly in the source 

code. In the context of the transformation logic we support, metrics are sourced from various time series 

databases (TSDBs), encompassing a wide range of business values with fine diversity and granularity. In response, 

we opted to enhance the efficiency of TSDB queries by introducing a dynamic approach, consolidating and 

optimising them. This same principle was extended to the values propagated in these TSDBs queries. 

The Rating Operator tool facilitates the transformation of metrics into Key Performance Indicators (KPIs), 

allowing users to define rules for this conversion. For instance, it empowers users to convert metrics related to 

compute resources into KPIs representing energy consumption, carbon footprint, or pricing. Figure 5-6 also 

illustrates an example of a Rating Operator use case of carbon emission calculation from energy consumption 

(orange part). In this example, illustrating the API developed as part of the project, a first template (query, in 

blue) provides a dynamic query, second templates (values, in pink) supply the values populating the query. 

Finally, the system returns respective objects (instances, in green) reporting the metric(s) transformation. 

Orange part illustrates an example of a Rating Operator use case of carbon emission calculation from energy 

consumption. 

 

Figure 5-6: Example of a Rating Operator use case. 

The Rating Operator tool is oriented towards providing a versatile solution for metrics transformation at 

different architectural levels. By offering this capability, it becomes a pivotal component in the ecosystem, 

enabling the exposure of aggregated metrics and Key Performance Indicators (KPIs) directly to applications. 

This strategic approach significantly reduces the reliance on centralised metrics collection and mitigates 

concerns related to the data volume resulting from metrics collection. The core of this concept is the 

empowerment of each architectural layer to define and generate metrics relevant to its specific functions. 

This decentralisation of metrics transformation ensures that applications can access and utilise tailored 

metrics and KPIs without the need for a centralised authority. This not only streamlines the integration of 

metrics into application logic but also enhances the overall energy efficiency of the system. Furthermore, 

by allowing metrics transformation at various architectural levels, the Rating Operator contributes to a 

more distributed and responsive system. Applications can dynamically adapt to changing conditions by 

utilising locally transformed metrics, leading to a reduction in the latency associated with centralised 

metrics collection. This, in turn, enhances the real-time nature of the data available to applications, 

fostering agility and responsiveness. 
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In the realm of efficient metrics management, the utilisation of Custom Resource Definitions (CRDs) within 

the Rating Operator tool proves to be a game-changer. Specifically, when applied to remote servers and 

services, CRDs empower users to finely tune and customise the configuration of resources, thereby enabling 

precise control over the pace of metrics retrieval. Users can define tailored configurations for each remote 

server or service, outlining the parameters governing metrics retrieval intervals. This granular control is 

important, especially in diverse and dynamic environments where different servers or services may have 

distinct requirements for metric update frequencies. Moreover, by applying scheduling to CRDs, users can 

dynamically reconfigure the metrics retrieval pace based on evolving needs or changing conditions. This 

adaptive approach ensures that the system optimally adjusts to varying workloads or operational demands, 

enhancing overall efficiency. For example, during periods of high demand or critical activities, users can 

increase the frequency of metrics retrieval for specific servers or services. Conversely, during less critical 

times, they can schedule a more relaxed pace to conserve resources and minimise unnecessary data transfer. 

This capability not only optimises resource utilisation but also contributes to the responsiveness and 

adaptability of the system. 

Figure 5-7 illustrates the use case of metrics transformation at various architectural levels. The observation 

of the metric update pace can be leveraged to define new CRDs configuration to limit collection pace in 

regards to these updates frequencies. 

 

Figure 5-7: Illustration of Rating Operator providing metrics transformation at various architectural levels. 

In addition to these features, we recently developed the Rating Operator API, which is also used to expose 

metrics to users. This API offers a structured and flexible interface to interact with transformed metrics. 

Endpoints are organized by their respective resources (e.g., namespaces, pods), and follow a consistent 

grammar across categories. 
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Below is an example demonstrating a simple query to an endpoint that requires no parameters: 

$ curl http://127.0.0.1/namespaces 

{ 

    "results":[{"namespace":"kube-system","tenant_id":"default"},{"namespace":"longhorn-

system","tenant_id":"default"},{"namespace":"monitoring","tenant_id":"default"},{"namespace":"rating","tenant_id":"de

fault"},{"namespace":"unspecified","tenant_id":"default"}],"total":5 

} 

Another example uses URL parameters. Endpoints of this type are labeled as [URL]. In the example below, 

we use the /metrics/<metric>/<aggregator> pattern. The aggregator handles the time range, and parameters 

are passed via the URL. Here, the 'daily' aggregator is used: 

# We use  the 'daily' aggregator for the example. 

$ curl http://127.0.0.1/metrics/co2-simulation-eu/daily 

{"results":[{"value":15.07968}],"total":1}} 

Monitoring Pace Scheduler 

Traditional system monitoring often depends on fixed scraping intervals, where metrics are collected at 

predetermined, constant times (e.g., every x seconds or x minutes). Although straightforward to 

implement, this method presents several drawbacks, especially in dynamic environments or user-centric 

applications with fluctuating activity levels. Fixed intervals can lead to inefficient resource utilization, as 

data is continuously collected even when there are no meaningful updates, consuming unnecessary 

computation and network resources. This inefficiency becomes more pronounced when monitoring 

metrics that rarely update. Moreover, in highly dynamic systems, fixed intervals might miss capturing 

critical changes promptly, leading to gaps in important data. In resource-limited environments, the 

constant overhead from fixed scraping can further strain system performance without offering additional 

value when the system is stable. Traditional methods also lack flexibility, making them less suitable for 

adaptive, workload-sensitive monitoring. 

To address these limitations, we introduce the Monitoring Pace Scheduler, a system that dynamically adjusts 

scraping intervals based on the observed rate of metric updates. When metrics are stable, the scraping 

frequency is reduced to minimize redundant data collection. Conversely, during periods of rapid change, the 

frequency is increased to ensure accurate and timely data capture. This adaptive strategy improves overall 

resource efficiency—reducing computation, network load, and storage—making it highly suitable for scalable 

and dynamic environments. A configurable threshold allows users to balance between monitoring precision 

and resource efficiency, enabling flexibility depending on application needs and metric behavior. 

Figure 5-8 shows the result of applying this dynamic monitoring approach. Data points collected under 

thresholds of 0.1% and 0.5% demonstrate that the overall shape and trends of the metric are preserved, 

while the number of collected points is reduced compared to a baseline fixed-interval method. This 

reduction underscores the system’s ability to adapt scraping intervals, preserving data fidelity while 

optimizing resource usage. 

http://127.0.0.1/namespaces
http://127.0.0.1/metrics/co2-simulation-eu/daily


 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  123 of 158 

D2.3 – The 6Green Enabling Technologies  

 
Figure 5-8: Total CPU utilization (%) with 0.1% threshold, influencing data collection frequency. 

Table 9: Comparison of the baseline and dynamic groups with different thresholds. 

Groups 

Median 

scrape 

interval (s) 

Precision 

(%) 
Overlay_dx MAPE (%) 

Bandwidth 

Reduction 

(%) 

Network 

Traffic 

Reduction 

(%) 

Storage 

Reduction 

(%) 

Baseline 15 - - - - - - 

Dynamic 

(0.1%) 
20 75.39 0.956 3.48 34.5 34.6 49.5 

Dynamic 

(1%) 
46 73.32 0.9473 4.67 34.6 34.7 49.5 

Dynamic 

(10%) 
36 67.76 0.9377 4.74 34.9 34.9 49.5 

Dynamic 

(80%) 
80 60.00 0.8084 24.5 37.6 37.6 50.5 

 

5.2.2 Resource Profiling Related to Elasticity and Resource Efficiency 

Resource autoscaling is a key characteristic of network management systems that wireless network operators 

are using in order to provide highly reliable, low latency, large-scale networking services. 5G networks are 

the recent answer to tackle this growing networking demand. One of the key approaches is deploying 

network services in a cloud-native environment. 

In case of containerized network services, Kubernetes provides a threshold-based solution for dynamic 

scaling, Horizontal Pod Autoscaler (HPA18). For a given time 𝑡𝑖 and a performance metric, HPA calculates the 

required number of replicas 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑  [𝑡𝑖 ] based on: 

𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑  [𝑡𝑖 ] =   ⌈𝑃 [𝑡𝑖 ]  ⋅
𝑀 [𝑡𝑖 ]

𝑀𝑑𝑒𝑠𝑖𝑟𝑒𝑑  
⌉ 

                                                           
18 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ 

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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where current replica count denoted as 𝑃 [𝑡𝑖], 𝑀[𝑡𝑖] denoted as the current metric value and 𝑀𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the 

desired threshold for the selected metrics. This solution is reactive and HPA takes scaling actions only if the 

static threshold is met. When a scaling action is triggered, there is a time delay for creating and making a new 

replica operational, which might affect the QoS based on the resource demand at that time. 

An alternative solution for Kubernetes HPA is proposed in [30], where an AI-assisted proactive scaling 

solution is developed, that can balance the trade-off between operational cost and QoS for a CNF deployment 

in a cloud-native environment. To be proactive, the proposed solution utilizes a multi-variant multiple steps 

time series forecasting Gated Recurrent Unit (GRU) neural network-based model that predicts the future 

resource consumption of the pods which belongs to a single deployment. The dynamic scaling is calculated 

by dynamic thresholding rules that utilize the predicted metric values provided by the forecasting model. 

Solutions leveraging Artificial Intelligence (AI), Machine Learning (ML), and Data Analytics (DA) show great 

promise in delivering significant advancements in 5G and beyond complex network environments. By utilizing 

those technologies, we can propose innovative mechanisms for analysing and predicting network behavioural 

patterns, and extract profiles associated with the resource requirements of network services. In [31] an 

application profiling modelling component is introduced, that collects a set of distinct resource profiles, all 

associated with a resource allocation solution that calculates scaling decisions based on a simple ML technique, 

without violating QoS requirements, in case of Kubernetes Edge Clusters. This ML technique involves the 

classification of distinct combinations of computing resources concerning the application’s service rate. 

In 6Green we could follow the approach of [32], where an integrated framework based on open-source tools 

is proposed, that offers flexibility in service providers to realise experiments and achieve profiling of their 

applications in terms of resource and elasticity efficiency. The benchmarking describes the process of running 

experiments. After the benchmarking process, the resulting data is kept in a time-series database from where 

it can be picked up for the profiling process. 

A set of analysis processes are supported to extract insights [32] such as: 

 Resource efficiency analysis for the identification of resource consumption trends and capacity limits, 

used for planning optimal reservation of resources. The considered monitored metrics combine a 

resource usage metric (e.g. CPU usage, memory usage) with a service output metric (e.g., traffic 

served, HTTP requests served, active users). Such an analysis is realised through the production of 

(multiple) linear regression models. 

 Elasticity efficiency analysis to assess the performance of scaling operations, along with the impact of 

scaling actions in the service output efficiency (e.g., traffic served by a VNF). Elasticity efficiency is 

expressed as a pair of discrete metrics, namely application capacity change (incremental capacity 

change related to a scaling action) and capacity change lead time (time required for a capacity 

change). Such an analysis is primarily based on monitoring and visualisation of elasticity actions. In a 

second stage, training and application of machine learning models for automated elasticity actions 

enforcement is considered by service providers, facilitating the undertaking of proactive elasticity 

actions for guaranteeing QoS. 

 Correlation analysis for the identification of strong and statistically significant correlations among 

infrastructure and VNF-specific metrics, leading to various insights (e.g., which parameters are highly 

dependent, which parameters can create bottlenecks in the overall performance). Such an analysis is 

realised through correlograms. 

 Forecasting based on time-series decomposition mechanisms. Such mechanisms are applied over 

resource usage or workload metrics and provide feedback to elasticity efficiency mechanisms. Various 

forecasting models are supported based on the type of the time series data. 
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 Graph analysis for identification of bottlenecks in software functions' calls and the consideration of 

software updates for optimal service provision. Such an analysis is valuable for software consisted of 

microservices, where performance issues and bottlenecks due to software functions' calls can be 

identified and provided as feedback to software developers. 

5.3 Estimation of Energy Consumption of Hardware Components 

Estimating the embodied energy consumption of virtualized components (i.e. containers and VMs) is 

challenging, primarily because hardware resources are not reserved for single virtual components. In 6Green, 

MDAF and IDAF are utilized to map hardware power consumption effectively. 

Scaphandre19, which relies on Intel RAPL20 counters and on the time spent on each process by CPU to 

compute the power consumption per process (containers and VMs), traditionally measures only direct power 

consumption of virtual components at the CPU and, only in some cases, DRAM controller levels. 

However, it is noted that indirect contributions arise from processes necessary to maintain servers and 

virtualized environments. Our approach extends Scaphandre by incorporating "embodied" power 

consumption, defined as power usage from kernel-level processes not directly attributed to containers or 

pods hosting only 6G components. To appropriately distribute this embodied power among virtual 

components, we leverage metrics from cAdvisor21, which provides resource (CPU, memory, network, etc.) 

utilization for containers. The mapping of the “embodied” power consumption is shown in Figure 5-9. The 

kernel-level metrics are divided, manually, into categories based on affinity. Then, each category is 

proportional ascribed to the appropriate virtual components. Regarding Kubernetes containers, that are 

expected to be the main form under which a 6G network will be deployed, we exploit the cAdvisor metrics: 

the purple, light blue and orange categories are mapped proportionally to the CPU, network, and memory 

consumption, respectively. While for VMs and Docker containers, supposing their resource utilization are not 

available, the mapping is uniform among all the instances. Finally, the monitoring category is isolated since 

it includes all the processes, not containerized, that are needed for monitoring purposes. 

5.3.1 Energy Consumption Measurements Based on Kubernetes, Scaphandre and Kepler 

To demonstrate our approach, we deployed a containerized Iperf application in a 2-node Kubernetes cluster. 

The setup consisted of one master node (4 CPUs, 264 GB RAM) and one worker node (2 CPUs, 96 GB RAM), 

both equipped with Mellanox MT27500 NICs. On both servers, monitoring applications are deployed. The 

tests consist of one couple of Iperf3 server and client deployed as K8s containers: one in each K8s node in order 

to generate inter-node traffic. UDP traffic is generated while the bitrate of Iperf3 is changed from 1 Gigabit/s to 

1Mbit/s. Each generation lasts 15 minutes and is followed by a 5-minute pause. The monitoring applications 

mentioned before export the metrics on to a Prometheus22 database with a 10 second scraping interval. 

Figure 5-10 shows the power consumption of the hosts and the Iperf containers. The green plot represents 

the power consumption of the whole server (i.e., including every component) measured by the Raritan power 

outlet (the IX7™ PDU Controller in detail). The orange plot represents the power consumption of the whole 

server measured by Intel RAPL. The yellow plot shows the power consumption of the Iperf containers (i.e., 

the server and the client in Figure 5-10), the grey plot represents the power consumption of the Iperf 

containers produced by the MDAF; finally, the blue plot represents the different bit rates which the test used. 

                                                           
19 https://hubblo-org.github.io/scaphandre-documentation/ 
20 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/running-average-power-limit-energy-reporting.html 
21 https://github.com/google/cadvisor 
22 https://prometheus.io/ 

https://hubblo-org.github.io/scaphandre-documentation/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://github.com/google/cadvisor
https://prometheus.io/
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Figure 5-9: Categorization and mapping of the kernel level metrics. 

First, let us focus on the server-level results: in both figures the Raritan power consumption is higher than 

the RAPL one; this is to be expected since the RAPL component only measures the power consumption of the 

CPU, while the Raritan one considers every component including the power supply. Then, considering the 

grey and yellow plots, it is worth noticing that, as expected, the container power consumption plots have 

lower values with respect to the other two. 

Additionally, a comparison between the proposed solution (i.e., MDAF) and the Scaphandre solution is needed. 

In  Figure 5-10 we can notice that Scaphandre underestimates the container power consumption since it 

considers only the container direct usage of the CPU. While our proposed MDAF takes into account the 

“embodied” power consumption due to all the kernel processes needed to keep the whole system 

(virtualization platforms included) up and running. Moreover, as shown in Figure 5-10, both the server and the 

client power consumption (i.e., yellow and grey plots) decrease with the Iperf Bitrate. This is more visible in the 

server than in the client. The former processes receiving packets when an interrupt is launched and then sends 

back reply packets. While the latter simply generates only the first packet and then sends it according to the 

decreasing bitrate. Finally, comparing the two sides of Figure 5-10 (i.e., the Iperf server and client), it can be 

noticed from the yellow and grey plots that the client consumes much less power than the server. 
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Figure 5-10: Power consumption of both the host (left) measured by the Raritan and RAPL and of the Iperf server/ client 
(right) measured by Scaphandre and the MDAF while the Iperf bitrate varies from 1 Gigabit/s to 1 Mbit/s. 

Furthermore, to point out more easily the differences between the MDAF and Scaphandre plots, Table 10 is 

inserted. It shows the difference in % (in terms of mean value and standard deviation) between the MDAF 

and the Scaphandre container power consumption for the Iperf server and client respectively. First, analyzing 

the server columns of Table 10, we can notice that the difference between MDAF and Scaphandre increases 

when the Iperf bitrate decreases. Therefore, as the throughput decreases, the operations per packet the 

server carries out increase. This occurs because when the incoming traffic volume is low, an interrupt is 

launched every one or very few packets; while, when the incoming traffic volume is high, an interrupt is 

launched every several packets. Then, comparing the server and client columns, it can be noticed that, on 

the one hand, the mean value of the difference in the client case is almost constant, while this is not true for 

the server; on the other hand, the standard deviations are much lower in the client (and almost constant) 

case compared to the server case. This shows a much higher variability in the server rather than the client. 

This can be explained with the tasks that each does. The server’s variability is much higher because its tasks 

(processing packets and sending replies) depend on external triggers (interrupts caused by incoming 

packets). While the client consists in a software that generates and sends packets; therefore, the operating 

system scheduler (rather than an external trigger) is in charge of reserving the CPU for the Iperf software. 

This results in less variability in the client. 

Table 10: Mean value and standard deviation of the difference in % between the MDAF and the Scaphandre container 
power consumption for the Iperf server and client respectively. 

Iperf Bitrate 
Mean value 

(server) 
Std (server) 

Mean value 

(client) 
Std (client) 

1 Gbit/s 19.6% 2.01% 4.35% 1.35% 

100 Mbit/s 43.4% 4.31% 3.86% 1.34% 

10 Mbit/s 52.0% 7.40% 4.06% 0.88% 

1 Mbit/s 56.7% 8.40% 3.92% 1.08% 

 

Following, we provide results regarding the mapping of consumption of hardware components to cloud 

resources (Kubernetes setup). 
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Energy measurement tool comparison between Scaphandre and Kepler 

Having deployed a Kubernetes single node cluster on bare metal, we have installed Kepler and Scaphandre 

together in order to perform a comparison between both tools. We have used Prometheus to scrape both 

tools’ metrics every 10s and configured Grafana in order to create a visual dashboard where it could be seen, 

in several visualizations, the details of the different metrics. One of the main differences between Kepler and 

Scaphandre is that Scaphandre gives most of its energy metrics in Gauge type and in terms of Power(W), 

while Kepler in Counter type and in terms of energy(J). So, when comparing one to the other we need to 

convert the energy metric to power using Promql’s rate operator. In all the figures we have Scaphandre on 

the left and Kepler on the right. First of all, we have the node power consumption in Watts (Figure 5-11). 

 

 

Figure 5-11: Node power consumption. 

Then, host power vs aggregation of processes (Figure 5-12). This represents the previous metric compared 

directly with the sum by node of the containers’ metrics. 

 

Figure 5-12: Host power vs Aggregation of processes/containers. 

In Figure 5-13, Figure 5-14 and Figure 5-15 we can see directly the metrics of the containers of the host in 

different types of visualizations: Time series, table and state timeline. 

 

Figure 5-13: Containers. 
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Figure 5-14: Containers (table). 

 

 

Figure 5-15: Containers (state timeline). 

Lastly, in Figure 5-16 we have the metrics aggregated by pod. 

 

Figure 5-16: Pods. 

In Figure 5-17, we can see the results of a test that we performed. The test consists in horizontally scaling a 

pod that request 0.5 Cores. We trigger the scaling every 3 minutes. The results are in our opinion quite 

normal, although interesting. We can see that, up to a certain point, scaling horizontally causes the 

consumption/container to decrease (even though the total consumption goes up). However, when certain 

load is reached, the addition of more replicas causes the total consumption to grow exponentially and the 

share per container to increase. 
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Figure 5-17: Horizontal pod scaling test. 

Kubernetes Consumption Measurement Using Scaphandre 

Using Grafana, we created a dashboard to visually analyse the consumption of a Kubernetes cluster broken 

down into the different resources that such cluster might have, such as: Containers, Pods, Deployments, 

Replicasets, DaemonSets and Namespaces (Figure 5-18). 

 

Figure 5-18: Scaphandre dashboard. 
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OpenShift Consumption Measurement Using Kepler 

Production setups are usually based on hardened Kubernetes distributions such as Red Hat’s OpenShift 

Container Platform, which also supports seamless integration with Kepler, as shown in Figure 5-19. 

 

 

Figure 5-19: OCP observability dashboard with Kepler integrated. 

The “Power Monitoring / Overview” dashboard page shows the system information (e.g., CPU architecture, 

number of nodes in the cluster), system-level energy consumption, as well as the top 10 energy consuming 

namespaces. On the other hand, the “Power Monitoring / Namespace” dashboard page shows the 

namespace- and pod-level power and energy consumptions. 

Consumption Based on OpenShift and Keppler 

A single node Openshift (SNO) has been set up with Kepler on bare metal and has been evaluated with DPDK 

l3fwd application, as shown in Figure 5-20. The l3fwd namespace includes 2 pods, each mapped to a NUMA 

node and NIC. DPDK Pktgen is running on a separate server, able to generate up to 100 Gbps (i.e., 4 x 25 

Gbps) to the l3fwd app. A scaled down 24-hour traffic profile, as shown in Figure 5-21, is used as basis for the 

input traffic, which is load balanced across the 4 links. 

 

Figure 5-20: DPDK l3fwd app running on single node OpenShift with Kepler integrated. 
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Figure 5-21: Traffic profile generated with Pktgen. 

Figure 5-22 and Figure 5-23 show the “Power Monitoring / Overview” and “Power Monitoring / Namespace” 

dashboard pages, respectively. In the latter, pod level power consumptions for CPU, RAM, GPU (if available) 

and Other are available in addition to namespace-level power and energy consumptions. 

It is important to note that polling applications like DPDK-based applications are observed to always remain 

in 100% CPU usage despite the actual load. Sleep states are also interrupted by the polling, even when there 

is no load. In this respect, solutions such as the Intel® Infrastructure Power Manager look into frequency 

scaling for such cases. The technology has been already used by commercial 5G Core vendors together with 

DPDK-based UPFs to boost 5G data plane performance, while saving power. 

 

Figure 5-22: “Power monitoring / Overview” dashboard page. 
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Figure 5-23: “Power monitoring / Namespace” dashboard page. 

5.3.2 Measurements Based on the Rating Operator 

The rating rules of Rating Operator can be used to model energetic affinities between services and their 

destination hardware. Furthermore, it empowers users to define transformation rules, enabling them to 

convert compute resource metrics into KPIs representing energy consumption or carbon footprint. Figure 

5-24 illustrates the monitoring of CPU and RAM consumption within a specific namespace of Rating Operator. 

It also shows the monitoring of carbon footprint at different infrastructure locations or architecture levels, 

which are transformed from energy consumption using rating rules of Rating Operator. 

Align I/O operations to the applied power management schemes and obtain useful energy-aware KPIs to 

drive energy optimizations 

I/O operations are considered from their service counterpart. Each service is then considered as an I/O 

producer in the context of microservices execution. As telecommunication platforms slowly evolves towards 

a native support of microservices based execution, this approach is considered both generic and future proof. 

The Rating Operator proposes specific rating rules to enable the mapping of resources volumes usage. 

For each service, several metrics are tracked, including network bandwidth. Within the rules, queries 
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enable the metrics collection, while values are set to enable their transformation towards higher level 

KPIs (as in metrics x values). 

Rating rules enable a mix of metrics to be considered, for example energy metrics obtained from physical 

devices or logical probes can be related to specific services, or specific resources. The level of precision can 

be set by the user, either considering a namespace (equivalent of a tenant in the Kubernetes definition) made 

of services, or a label that can be attached to one or more services. 

  

Figure 5-24: CPU/RAM usage and carbon footprint monitoring. 

5.4 Network Observability and Consumption of Network Equipment 

The historical calculation of energy efficiency encompasses the entire network, with all its elements, which 

includes both legacy cellular technologies and the radio access and core networks, along with data centers 

(Figure 5-25). It is determined by measuring the amount of electrical energy consumed per unit of 

transmitted data within a specific time frame, expressed either as Joules per bit or bits per Joule [33], [34]. 

 

Figure 5-25: Energy consumption breakdown by network element, 2025 [35]. 
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As regards the most expensive segment in terms of energy, the Radio Access one, the network monitoring 

activities are oriented to allow the four categories of most effective approaches for increasing the energy 

efficiency23, nominally [36]: 

 Resource allocation: The primary objective is to enhance the energy efficiency by optimally 

distributing the system's radio resources to minimize power consumption instead of prioritizing 

throughput. Numerous studies have demonstrated that adopting this approach can result in 

significant improvements in energy efficiency, albeit with a minor decrease in throughput. 

 Network planning and deployment: The second approach involves strategically placing infrastructure 

nodes to achieve maximum coverage using minimal energy consumption, instead of just optimizing the 

covered areas. Furthermore, implementing radio devices switch-on/switch-off algorithms and antenna 

muting techniques allows to further optimize energy usage by adjusting to traffic conditions [37]. 

 Energy harvesting and transfer: The third method involves harvesting energy from the environment 

to power communication systems [19]. 

 Hardware solutions: The aim of this approach is to develop radio communication systems' hardware 

with a specific focus on energy consumption optimization and implementing significant architectural 

modifications [38]. 

In this context, also pushed by the advanced Machine Learning techniques capabilities that are being applied 

more and more frequently, network monitoring has reached a very fine and granular level (Figure 5-26). 

 
Figure 5-26: ML energy consume prediction. 

Among the most important monitored features it is important to mention: 

 Radio Resource Control (RRC) Connection Types: Emergency, High Priority Access, Mobile 

Terminating/Originating Access, Data, Voice Call, and Signalling 

 Timing Parameters: MAC SDU data reception timing, transmission intervals, buffer management 

 Latency Measurements: Multiple transmission buffer-related latency metrics 

 Volume Metrics: Downlink/uplink data radio bearer volumes, signalling radio bearer bits 

 Filtered Subclasses: Lower/Higher volume filtering categories 

                                                           
23 Please note that also if the desire is to achieve energy savings without impacting performances, the technology may 
provide inherent flexibility to the operators in order to set the best balance between energy efficiency and 
performances when it is deemed appropriate and justified. 
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Metro, Edge and Core Network Energy Optimization 

Energy saving is approached at three hierarchical levels: 

Network Level 

 Flexible collaboration between domains and technologies (5G-LTE spectrum optimization) 

 Comprehensive intelligent power management 

 Data movement minimization through hierarchical caching 

 Smart utilization of key 5G features: small cell networks, massive MIMO, device-to-device 

communications 

Site Level 

 Renewable energy sources (solar power costs decreased 80% over the last decade) 

 Smart lithium batteries 

 Cabinet reduction and liquid cooling to minimize air conditioning requirements 

Equipment Level 

 High-efficient hardware implementation 

 Automatic activation/deactivation with shut-down options 

 AI/ML and predictive analytics for power efficiency optimization 

Power Consumption Models 

Specialized literature emphasizes the importance of including precise 5GC deployment software architecture 

information in network observability, as virtualization technology significantly impacts power consumption 

patterns. 

Refined power models [39] separate contributions from each active domain: 

Total Power Model: 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + ∑ 𝑃𝑑𝑜𝑚𝑎𝑖𝑛(𝑘)

𝑁

𝐾=1

 

Where Pdomain(k) is the power consumed by an active domain k, and N is the number of domains, and each 

domain factor can be referred to a multi-dimensional linear weighted power model: 

𝑃𝑑𝑜𝑚𝑎𝑖𝑛 = 𝑐0 + 𝑐1𝑃𝐶𝑃𝑈 + 𝑐2𝑃𝑐𝑎𝑐ℎ𝑒+𝑐3𝑃𝐷𝑅𝐴𝑀+𝑐4𝑃𝑑𝑖𝑠𝑘 + ⋯ 

The different contributions are characterized starting from careful testing campaigns (e.g., Figure 5-27 [39]) 

and further indicate the required quantities that need to be constantly observed and collected. 
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Figure 5-27: Power vs threads, CPU frequency and Memory [39]. 

 

5.4.1 Power Consumption Monitoring on Cloud-Native 5GS 

To validate power consumption monitoring concepts in cloud-native 5G environments, we built a proof of 

concept in 5G/6G testbed (Figure 5-28). We extended cloud-native 5G systems, featuring zero-touch 

provisioning and end-to-end slicing, with a power measurement toolset. We deployed Netio for power outlet 

level measurements, embedded RRU and IaaS tools for RRU input/output and CPU power metering, and the 

Scaphandre tool for process-level metering to measure the consumption of BBU, 5G CN, and application 

components. The qMON test automation tool was utilized to control and predict user traffic patterns and to 

evaluate cloud-native system power consumption under real traffic load. 

 

Figure 5-28: 5G/6G Pilot Environment. 

The deployed power measurement toolset enables active measurement of the 5G system's power 

consumption from an end-to-end perspective. This includes 5G UE, RRU, BBU, 5G CN, and application 

components, providing full visibility of all factors — both hardware and software — that impact the total 

power consumption of the mobile environment (Figure 5-29). 
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Figure 5-29: Measuring power consumption taking into consideration end-to-end perspective. 

To verify the proposed power metering approach, we have deployed 5G system on an x86 NFVI environment, 

which allows us to run 5G NR (virtual BBU) and 5G core network functions on a single Kubernetes instance. 

This supports container-based deployment of network functions and MANO-compliant orchestration. We 

deployed 5GCN (virtual core network) and 5G NR (virtual BBU) as network functions (NF) and corresponding 

network services (NS) using Kubernetes deployment principles. With virtual network function descriptors 

(VNFD) and network service descriptors (NSD), we can easily reconfigure key 5G NR and Core network 

parameters, such as used RRU band and bandwidth, power per radio port on RRU, MIMO Level, TDD mode, 

slicing configuration, user bandwidth profile, and user traffic patterns. 

We have conducted a series of tests to verify the prepared environment. In the first test, we aimed to observe 

the difference between an idle and an active user — where the user is not generating any traffic (UE in idle 

mode) and RAN is also in idle mode or when the user is fully utilizing available 5G RAN resources (UE in active 

mode). We prepared a test methodology where we generated TCP-based DL traffic for a duration of 2 

minutes, followed by an idle time of 1 minute. This testing was repeated in cycles. Figure 5-30 provides an 

indicative view on relations and dynamics of power consumption at different components while testing with 

before described (cyclic) network load. Based on the observed results, we can conclude: 

 During the active test cycle, when the 5G UE is generating traffic, power consumption increases significantly. 

 Even when the user is idle, the 5G system and 5G UE consume significant power. This includes power usage 

in hardware standby mode (RRU, IaaS server), 5G NR and 5GCN standby mode (BBU, AMF, SMF), and 

application standby mode. 

 If user traffic follows a deterministic pattern, then power consumption (RRU, 5G CN, Iperf Server) also 

exhibits a deterministic pattern. 
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Figure 5-30: Measuring the power consumption of the 5G system, breaking down the hardware and software 
components (and indicative view on relations and dynamics of power consumption at different 

components while testing with cyclic network load). 
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 Adoption of Enabling Technologies in the 6Green Service-based 
Architecture 

In the current section, we shortly refer to the adoption of the aforementioned technologies towards the 

development of the 6Green Service-based Architecture (SBA), as shown in Figure 6-1. 

 

Figure 6-1: The 6Green SBA framework. 

Following, in Table 11 we highlight the set of main technologies that are adopted towards the development of 

each of the components of the 6Green SBA, while a short description for such an adoption is provided in Table 12. 

Table 11: Mapping among the Enabling technologies and the components of the SBA. 

Enabling Technology 

M
D

A
F 

N
W

D
A

F 

N
SD

A
F 

P
C

F/
 

N
SP

C
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N
EF

 

A
F 

B
SS

F 

EN
IF

/ 

N
SE

N
IF

 

EG
M

F/
 

N
SM

F/
N

F

M
F 

Ed
ge

M
F 

C
C

M
F 

Traffic Offloading     X X      

Connectivity (Wide-Area 
Infrastructure Manager) 

       X   X 

Infrastructure as a Code 
(MetalCL) 

       X  X X 

ZeroOps and Automation in Infra-
structure Management (NFVCL) 

      X X    
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Enabling Technology 

M
D
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SD
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SP

C
F 

N
EF
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B
SS

F 

EN
IF
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N
SE

N
IF

 

EG
M

F/
 

N
SM

F/
N

F

M
F 

Ed
ge

M
F 

C
C

M
F 

FaaS programming model        X    

RAN power management   X     X    

Optimal deployment of 
network slices 

  X     X X   

Data Fusion and Profiling X X X    X X    

Network observability  X X  X  X X    

Dynamic QoS management  X  X X    X   

 

Table 12: Short description for the adoption of Enabling technologies per component of the SBA. 

SBA Component Main usage of enabling technologies 

MDAF The main enabling technology adopted by the MDAF is the Data Fusion and 

Profiling one which is exploited to generate more complex data (e.g., 

forecasting the power consumption of cloud native components). 

NWDAF The NWDAF adopts two main enabling technologies: Data Fusion and Profiling 

and Network Observability. The former is exploited to generate more complex 

data by fusing the ones produced by the MDAF and those produced by the 

other NFs (e.g., AMF, SMF, etc.). The latter is a crucial part of the NWDAF since 

this is the NF devoted to spreading observability information from the sources 

(i.e., MDAF, AMF, SMF, etc.) to all the other NFs that request them. 

NSDAF The NSDAF enables the network slice analysis in the context of the 6G 

architectures, for optimal energy resources consumption, applied in the cloud 

native environment. The envisioned SBA integration of the NSDAF component 

together with NWDAF (seen as functional sub-component of the NF) will 

interact with the other NFs for green infrastructure and services 

implementation, with support of 6Green orchestration and automation tools. 

PCF/ NSPCF PCF serves as a crucial enabling technology that manages network policies and 

enforces rules for data traffic and Quality of Service (QoS). It dynamically 

adjusts policies based on real-time network conditions and subscriber data, 

ensuring efficient resource utilization and optimal service delivery. 

NEF NEF facilitates secure and efficient exposure of network services and 

capabilities to third-party applications (AF). It provides a standardized interface 

for external applications to interact with the network, ensuring proper access 

control, policy enforcement and enabling the traffic offloading mechanism. 



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  142 of 158 

D2.3 – The 6Green Enabling Technologies  

SBA Component Main usage of enabling technologies 

AF AF functionalities are provided by the Vertical Application Orchestrator which 

is used for managing the deployment and real-time operations of vertical 

applications, interfacing seamlessly with end users and network orchestration 

systems. Thus, it decouples application layer management from network layer 

management, providing an interface for users to manage applications and their 

features, and handling the entire lifecycle of vertical applications. This includes 

requesting cloud resources, configuring network slices, and implementing 

Green Elasticity and Edge Agility based on workload demands. It also provides 

capabilities to trigger network and slice configuration changes through Service-

Based Interface (SBIs) with the BSSF, dynamically configuring the network to 

meet specific application needs in real-time. It operates infrastructure-

agnostically, utilizing a dynamic intent-based system for real-time intent 

negotiation and reconfiguration, optimizing resource usage and network 

performance with Energy-aware Backpressure information flows.  

BSSF Intent management facilitates a ZeroOps and automated network 

management by abstracting underlying configurations from verticals. The BSSF 

acts as an aggregator of slice requests, enabling the upper layers to automate 

processes more reliably. It also allows for profiling in intent management based 

on policies assigned to specific vertical types. As a consequence of requesting 

a slice, network monitoring is also present in BSSF. 

ENIF / NSENIF One of the main enabling technologies adopted in ENIF/NSENIF regard the 

mechanisms that support optimal deployment and lifecycle management of a 

network slice, considering resources in the RAN, transport and core network 

part, as well as deployment in serverless and non-serverless environments. 

Intent lifecycle management is supported from the specification of the intent 

towards its validation and its monitoring during the lifetime of a service 

deployment and operation. Dynamic policies management is applied to satisfy 

the requested intent. Data fusion and profiling mechanisms are used to 

continuously monitor various performance metrics over the infrastructure, 

analyzed data and proceed to decision making. ZeroOps, automation and 

infrastructure as a code principles are exploited to increase automation and 

distributed intelligence of the provided services by ENIF/NSENIF. 

EGMF / NSMF / NFMF NSMF deploys an end-to-end NSI for each network connectivity demand 

expressed by AFs. To do this, NSMF consumes the management services of 

other 6Green NFs using SBA. For example, NSMF consumes NFMF services to 

configure the deployed VNFs/CNFs by NFVO to establish a new NSI or alter an 

existing one. To protect the management services from unauthorized AFs, 

EGMF, another 6Green NF, is responsible for securely exposing the 

management services. Finally, whenever a green decision regarding modifying 

an NSI is made, NSMF, as an actuator, is in charge of applying that decision in 

the 6Green SBA. 
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SBA Component Main usage of enabling technologies 

EdgeMF EdgeMF allows the SBA to provide computing resources at the edge to vertical 

applications, enabling Edge Agility and Green Elasticity mechanisms. It achieves 

this by managing Edge Data Networks (EDN) objects that provide data and 

compute services in a specific edge zone, as well as by managing the compute 

resources that are made up of one or more EDNs. For this purpose, EdgeMF will 

leverage the services of the VAO and the NSMF, and will require services from 

the CCMF and the MetalCL infrastructure component. 

CCMF The CCMF enables the SBA to maintain a repository of computing resources to 

be used to deploy vertical applications, e.g., from Kubernetes clusters. 
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 Conclusions 

In accordance with the objectives of WP2, in this deliverable we have listed a set of enabling technologies 

that are developed in the 6Green Project and are adopted for the development of the 6Green Service-based 

Architecture (SBA). 

A wide range of enabling technologies are detailed, including network connectivity management and traffic 

offloading mechanisms; cloud-native orchestration mechanisms considering approaches that take advantage 

of service-mesh techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps 

and continuous automation principles; power management mechanisms for the core, transport and access 

part of the continuum by considering serverless workloads; network slice lifecycle management and 

optimization techniques, including energy-aware network slice management in O-RAN and multi-provider 

settings; and green observability and profiling mechanisms. 

Upon the description of the development of the set of enabling technologies, a mapping among the detailed 

technologies and the components of the 6Green SBA is provided. This mapping is aligned with the 

development of software prototypes for the enabling technologies as detailed in D2.4, as well as with the 

development of the 6Green SBA, as detailed in D3.3 and D3.4. 
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Annex A: Blueprint Deployment and Lifecycle Management Workflows 

 

 

Figure A-1: Operations required to create a core with the UPF provisioned in a VM. 
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Figure A-2: Operations required to create a core with the UPF provisioned in a pod. 



   

 

   

 

 

Figure A-3: Operations required to add a DNN. 

 

 

Figure A-4: Operations required to add a slice with the UPF provisioned in a VM. 
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Figure A-5: Operations required to add a slice with the UPF provisioned in a pod. 
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Figure A-6: Operations required to add a TAC with the UPF provisioned in a VM. 
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Figure A-7: Operations required to add a TAC with the UPF provisioned in a pod. 

  



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  154 of 158 

D2.3 – The 6Green Enabling Technologies  

 

Figure A-8: Operations required to add a UE. 

 

 

Figure A-9: Operations required to delete a TAC with the UPF provisioned in a VM. 
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Figure A-10: Operations required to delete a TAC with the UPF provisioned in a pod. 
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Figure A-11: Operations required to delete a slice with the UPF provisioned in a VM. 
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Figure A-12: Operations required to delete a slice with the UPF provisioned in a pod. 

  



 

 
101096925 – 6Green – HORIZON-JU-SNS-2022  158 of 158 

D2.3 – The 6Green Enabling Technologies  

 

Figure A-13: Operations required to delete a core with the UPF provisioned in a VM. 

 

Figure A-14: Operations required to delete a core with the UPF provisioned in a pod. 
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