

Deliverable D2.3
The 6Green Enabling Technologies

Grant Agreement No 101096925

Full Title Green Technologies for 5/6G Service-Based Architectures

Start date 01 Jan 2023

End date 30 Apr 2026

Duration 40

Project URL https://www.6green.eu

Coordinator CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (CNIT)

Contractual due date 31/12/2025 (M36) Actual submission date 16/01/2026

Nature R - Report Dissemination Level PU - Public

Lead Beneficiary ICCS

Responsible Author Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis, Petros Maratos (ICCS)

Contributions from Marius Iordache, Catalin Brezeanu, Daniel Tichiu (ORO); Daniele Ronzani (HPE);
Chiara Lombardo, Paolo Bono, Davide Freggiaro, Alderico Gallo, Nicole S. Martinelli,
Ramin Rabbani, Beatrice Siccardi (CNIT); Jonathan Rivalan, Hai Long Ngo (SMILE);
Jane Frances Pajo (TNOR); Janez Sterle, Luka Koršič, Rudolf Sušnik (ININ); Javier
Velázquez Martínez, Luis Miguel Contreras Murillo, Guillermo Sánchez Illán (TID);
Claudio Cicconetti, Raffaele Bruno (CNR); Orazio Toscano (TEI).

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

101096925 – 6Green – HORIZON-JU-SNS-2022 2 of 158

D2.3 – The 6Green Enabling Technologies

Revision history

Version Issue Date Changes Contributor(s)

v0.1 01/07/2025 Initial version Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis (ICCS)

v0.2 15/09/2025 Revision of
contributions
in Sections 2-5

Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis, Petros
Maratos (ICCS); Marius Iordache, Catalin Brezeanu, Daniel
Tichiu (ORO); Daniele Ronzani (HPE); Chiara Lombardo, Paolo
Bono, Davide Freggiaro, Alderico Gallo, Nicole S. Martinelli,
Ramin Rabbani (CNIT); Jonathan Rivalan, Hai Long Ngo
(SMILE); Jane Frances Pajo (TNOR); Janez Sterle, Luka Koršič,
Rudolf Sušnik (ININ); Javier Velázquez Martínez, Luis Miguel
Contreras Murillo, Guillermo Sánchez Illán (TID); Claudio
Cicconetti, Raffaele Bruno (CNR); Orazio Toscano (TEI).

v0.3 20/10/2025 Finalization of
contributions
in Sections 2-5

Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis, Petros
Maratos (ICCS); Marius Iordache, Catalin Brezeanu, Daniel
Tichiu (ORO); Daniele Ronzani (HPE); Chiara Lombardo, Paolo
Bono, Davide Freggiaro, Alderico Gallo, Nicole S. Martinelli,
Ramin Rabbani (CNIT); Jonathan Rivalan, Hai Long Ngo
(SMILE); Jane Frances Pajo (TNOR); Janez Sterle, Luka Koršič,
Rudolf Sušnik (ININ); Javier Velázquez Martínez, Luis Miguel
Contreras Murillo, Guillermo Sánchez Illán (TID); Claudio
Cicconetti, Raffaele Bruno (CNR); Orazio Toscano (TEI).

v0.4 15/11/2025 Final
contributions
in all the
sections

Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis, Petros
Maratos (ICCS); Marius Iordache, Catalin Brezeanu, Daniel
Tichiu (ORO); Daniele Ronzani (HPE); Chiara Lombardo, Paolo
Bono, Davide Freggiaro, Alderico Gallo, Nicole S. Martinelli,
Ramin Rabbani, Beatrice Siccardi (CNIT); Jonathan Rivalan, Hai
Long Ngo (SMILE); Jane Frances Pajo (TNOR); Janez Sterle,
Luka Koršič, Rudolf Sušnik (ININ); Javier Velázquez Martínez,
Luis Miguel Contreras Murillo, Guillermo Sánchez Illán (TID);
Claudio Cicconetti, Raffaele Bruno (CNR); Orazio Toscano (TEI).

v0.5 07/12/2025 Complete
draft for
internal
review

Anastasios Zafeiropoulos, Eleni Stai, Nikos Fryganiotis, Petros
Maratos (ICCS);

v0.6 12/12/2025 Internal
review

Chiara Lombardo (CNIT); Luis Miguel Contreras Murillo (TID)

v0.7 19/12/2025 Revisions
upon internal
review

All contributors

v1.0 16/01/2026 Version ready
for submission

Chiara Lombardo, Riccardo Rapuzzi (CNIT)

101096925 – 6Green – HORIZON-JU-SNS-2022 3 of 158

D2.3 – The 6Green Enabling Technologies

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent

the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other participant

in the 6Green consortium make no warranty of any kind with regard to this material including, but not limited to the

implied warranties of merchantability and fitness for a particular purpose.

Neither the 6Green Consortium nor any of its members, their officers, employees or agents shall be responsible or

liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the 6Green Consortium nor any of its members, their

officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused by or

arising from any information advice or inaccuracy or omission herein.

Copyright message

© 6Green Consortium, 2023-2026. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

101096925 – 6Green – HORIZON-JU-SNS-2022 4 of 158

D2.3 – The 6Green Enabling Technologies

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 9

Glossary of terms and abbreviations used .. 10

Executive Summary ... 12

 Introduction ... 13

 Connectivity and Traffic Offloading ... 14

2.1 Traffic Offloading to Hardware Acceleration-Based UPF by Control Plane Service Exposure 14

2.1.1 Slice Offloading Mechanism within the 5GC ... 14

2.1.2 Validation ... 16

2.2 Connectivity Enablers in the Transport Network .. 18

2.2.1 Architecture ... 18

2.2.2 Validation ... 20

 Cloud Native Orchestration and Automated Network Infrastructure Management 27

3.1 Deployment Aspects .. 27

3.2 Service Mesh Technologies ... 31

3.2.1 Overhead of Container Scaling Operations ... 33

3.3 Infrastructure as a Code Mechanisms Based on the MetalCL ... 40

3.3.1 Power Management Capabilities .. 42

3.3.2 Results ... 48

3.4 ZeroOps and Continuous Automation Based on the NFV Convergence Layer (NFVCL) 52

3.4.1 The Network Ecosystem .. 54

3.4.2 The NFVCL Architecture ... 55

3.4.3 Blueprint Deployment and Lifecycle Management ... 57

 Network Slice Lifecycle and Power Management in Serverless Environments 64

4.1 Stateful FaaS for Energy Consumption Minimisation .. 64

4.1.1 Mathematical Modelling and Analysis .. 64

4.1.2 Experimental Evaluation .. 73

4.1.3 Conclusions .. 81

4.2 Adaptive RAN Power Management in Serverless Environments .. 82

4.2.1 Energy Use Patterns on the 5G HW ... 82

4.2.2 Energy Use Patterns on the 5G SW ... 83

4.2.3 Advanced Experimentation ... 84

101096925 – 6Green – HORIZON-JU-SNS-2022 5 of 158

D2.3 – The 6Green Enabling Technologies

4.2.4 Main findings ... 88

4.3 Energy-Aware Network Slice Management in O-RAN ... 89

4.3.1 System Architecture and Modeling ... 90

4.3.2 Slice Request Model .. 90

4.3.3 Problem Formulation ... 93

4.3.4 Proposed Solution via Model Predictive Control (MPC) .. 95

4.3.5 Evaluation Results (MPC) ... 97

4.3.6 Proposed Solution using Reinforcement Learning (RL) ... 100

4.3.7 Evaluation Results (RL) .. 102

4.4 Application Graph Deployment across Multiple Providers ... 108

4.4.1 Theoretical Foundation ... 108

4.4.2 Experimental Evaluation .. 111

 Green Observability and Profiling in the 5/6G Continuum ... 116

5.1 Data Fusion Mechanisms ... 116

5.2 Profiling Mechanisms .. 119

5.2.1 The Rating Operator Tool .. 119

5.2.2 Resource Profiling Related to Elasticity and Resource Efficiency .. 123

5.3 Estimation of Energy Consumption of Hardware Components .. 125

5.3.1 Energy Consumption Measurements Based on Kubernetes, Scaphandre and Kepler.......... 125

5.3.2 Measurements Based on the Rating Operator .. 133

5.4 Network Observability and Consumption of Network Equipment ... 134

5.4.1 Power Consumption Monitoring on Cloud-Native 5GS ... 137

 Adoption of Enabling Technologies in the 6Green Service-based Architecture 140

 Conclusions .. 144

References ... 145

Annex A: Blueprint Deployment and Lifecycle Management Workflows ... 148

List of Figures

Figure 2-1: Flowchart representation of the Slice offloading procedure. .. 15

Figure 2-2: AMF information regarding UE connectivity status. ... 16

Figure 2-3: Terminal output with execution logs of ProxyAPI (left) and NEF prototype (right). 16

Figure 2-4: SliceOffload request body... 17

Figure 2-5: UPF 1 (above) and UPF 2 (below) user traffic. .. 18

Figure 2-6: WIM Architecture. ... 19

Figure 2-7: Validation Architecture. .. 21

101096925 – 6Green – HORIZON-JU-SNS-2022 6 of 158

D2.3 – The 6Green Enabling Technologies

Figure 2-8: TFS Components Architecture. .. 23

Figure 2-9: Wide Area Network Topology. ... 25

Figure 2-10: Optimal Path calculated by the planner. .. 26

Figure 2-11. TFS L2 service created ... 26

Figure 2-12: Configurations and path for service. ... 26

Figure 3-1: NSDAF Interactions with other functions. .. 28

Figure 3-2: NSDAF data processing. .. 29

Figure 3-3: NSDAF data flows. ... 29

Figure 3-4: Actual and predicted energy consumption by NSDAF .. 30

Figure 3-5: NSDAF APIs ... 31

Figure 3-6: Traffic generation and scaling the pod. ... 34

Figure 3-7: Setup used for the tests. ... 34

Figure 3-8: Power consumption when the pod does not receive any traffic. .. 37

Figure 3-9: Power Consumption when the pod scales every 15 seconds. ... 37

Figure 3-10: Power Consumption when the pod scales every 3 minutes. ... 38

Figure 3-11: Power Consumption when the pod scales every 5 minutes. ... 38

Figure 3-12: Power Consumption when the pod scales every 12 minutes. ... 39

Figure 3-13: Power Consumption when the pod is active and receives traffic. .. 39

Figure 3-14: Power consumption when the pod is active, and traffic is stopped. .. 40

Figure 3-15: Example output showcasing CPU architecture information retrieved through the API. 43

Figure 3-16: Representation of the available governors for CPUs retrieved using the API. ... 43

Figure 3-17: Monitoring of the status of governors for each CPU core through the API. .. 44

Figure 3-18: Illustration of the current frequency of each CPU core retrieved through the API. 44

Figure 3-19: Visualization of the available C-states for each CPU core retrieved through the API. 45

Figure 3-20: Real-time monitoring of the status of C-states for each CPU core through the API. 45

Figure 3-21: Example representation of the percentage distribution of CPU core states retrieved through the API. 46

Figure 3-22: Power consumption monitoring using the RAPL method. ... 47

Figure 3-23: Power consumption monitoring utilizing the IPMI protocol. ... 47

Figure 3-24: Real-time monitoring of power usage through sensor-based measurements. ... 47

Figure 3-25: Visual representation of the provided GUI. .. 48

Figure 3-26: Comparison of power consumption before and after changing the governor to Powersave with normal

system load. ... 48

Figure 3-27: Power consumption with the Powersave governor under full system load, illustrating increased power

usage compared to the previous configuration. ... 49

Figure 3-28: Power consumption spikes after reverting the governor back to Performance while maintaining full

system load. ... 49

Figure 3-29: Significant decrease in power consumption with all C-states enabled under normal system load

conditions. .. 50

Figure 3-30: Power consumption increases notably under full system load even with all C-states enabled. 50

Figure 3-31: Lower power usage observed with the Powersave governor and all C-states enabled under normal load

conditions. .. 51

Figure 3-32: Increased power consumption under full system load with the Powersave governor and all C-states

enabled compared to the previous configuration. ... 51

Figure 3-33: Power consumption with specific C-state configuration (only State2) and Powersave governor under

normal load conditions. .. 52

Figure 3-34: Power Consumption with Ondemand Governor and All C-states Enabled Under Full System Load. 52

101096925 – 6Green – HORIZON-JU-SNS-2022 7 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-35: A Network ecosystem instance composed of 5 Network Services made up of a variable number of xNFs.

 ... 53

Figure 3-36: The graph of a network ecosystem with anchor points highlighting the link between the xNFs and the

physical infrastructure. ... 53

Figure 3-37: Network ecosystem metamodel. .. 55

Figure 3-38: The NFVCL internal architecture. ... 56

Figure 3-39. Execution time of lifecycle operations performed on Free5GC. .. 59

Figure 3-40. Execution time of lifecycle operations performed on OpenAirInterface. ... 60

Figure 3-41. Execution time of lifecycle operations performed on SDCore. .. 60

Figure 3-42. Sum of the execution times categorized in the above Figures. ... 61

Figure 3-43: Distribution of the execution times for the three 5GSs with the UPF deployed in a pod. 62

Figure 3-44: Distribution of the execution times for the three 5GSs with the UPF deployed in a VM. 62

Figure 3-45: Number of code lines generated by the NFVCL for the automated configuration, deployment and

orchestration of the three tested cores. .. 62

Figure 4-1: Example of how to realize stateful processing with stateless FaaS. .. 64

Figure 4-2: Example of stateful FaaS. .. 65

Figure 4-3: Migration of a stateful FaaS runner from node A to node B. ... 65

Figure 4-4: Deployment of a three-function chain (top) on two processing nodes through stateless FaaS (middle) and

stateful FaaS (bottom). ... 66

Figure 4-5: Application model. An app 𝑎 consists of functions arranged in a graph. If function 𝑢 calls function,

𝑣 then an edge exists, and its weight 𝑑𝑎𝑢𝑣 is the amount of data exchanged. Each function 𝑣 has a state of size

𝑠𝑎𝑣.. 67

Figure 4-6: Simulations: 𝛼 and 𝛽 vs. defragmentation period 𝛥. .. 71

Figure 4-7: Simulations: energy consumption vs. 𝐸𝐵. .. 71

Figure 4-8: Simulations: energy consumption vs. 𝑆/𝐷, 𝐸𝐵 = 0.05 μW/b/s. ... 72

Figure 4-9: Simulations: energy consumption vs. average application lifetime. ... 72

Figure 4-10: Simulations: energy consumption vs. node capacity. ... 73

Figure 4-11: Testbed used for the evaluation of stateless vs. stateful serverless computing. 73

Figure 4-12: Workflows used for the experiments: (a) stateful, vs. (b) stateless. ... 74

Figure 4-13: Calibration experiment with increasing stateful flows. Left: workflow latency. Right: Throughput. 75

Figure 4-14: Calibration experiment with increasing stateful flows. Function execution (left) vs. transfer (right) time.

 ... 76

Figure 4-15: Calibration experiment with increasing stateful flows. Left: active power. Right: CPU usage. 76

Figure 4-16: Calibration experiments with various state sizes. Left: workflow latency. Right: network traffic. 77

Figure 4-17: Calibration experiments with various state sizes. Left: active power. Right: CPU usage. 77

Figure 4-18: Full experiments, stateful vs. stateless. Left: latency. Right: loss ratio. ... 78

Figure 4-19: Full experiments, stateful vs. stateless. Memory occupancy of Orin (left) and RPi (right) devices. 79

Figure 4-20: Full experiments, stateful vs. stateless. CPU usage of Orin (left) and RPi (right) devices.......................... 79

Figure 4-21: Full experiments, stateful vs. stateless. Network traffic of Orin (left) and RPi (right) devices. 80

Figure 4-22: Full experiments, stateful vs. stateless. Active power of Orin (left) and RPi (right) devices. 80

Figure 4-23: Full experiments, stateful vs. stateless. Active power vs. CPU usage with 20 (left) and 200 (right)

workflows. .. 81

Figure 4-24: Energy use patterns – 5G HW. ... 82

Figure 4-25: Dependences between user behaviour and application design on 5GS power usage. 83

Figure 4-26: Energy Use Patterns – more complex MIMO configuration causes more power consumption (left,

middle), 5G BBU component’s power consumption correlates to application power consumption. 84

Figure 4-27: Energy Savings by Applying Gradual Cell Deactivation ... 85

file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457356
file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457357
file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457358
file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457359
file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457360
file://///quercia/rapuz/Dottorato/Progetti/HORIZON%20Europe/6Green/Work%20Package/WP2/D2.3/6Green_D2.3_v1.0.docx%23_Toc219457361

101096925 – 6Green – HORIZON-JU-SNS-2022 8 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-28: Radio Port Power Optimisation with Corresponding Throughput Gains .. 86

Figure 4-29: Energy Reduction Enabled by Bandwidth Downscaling ... 87

Figure 4-30: Power Efficiency Improvements via MIMO Downscaling... 88

Figure 4-31: Proposed O-RAN-based Architecture. .. 90

Figure 4-32: MPC Iterations. .. 96

Figure 4-33: Comparative evaluation results under highly accurate forecasting scenarios. .. 100

Figure 4-34: Comparative evaluation results under less accurate forecasting scenarios. .. 100

Figure 4-35: Dataset information. ... 104

Figure 4-36: Cumulative reward evolution during training. ... 105

Figure 4-37: Comparative evaluation under varying arrival patterns. .. 105

Figure 4-38: Low load conditions. ... 106

Figure 4-39: High load conditions. ... 107

Figure 4-40: Slice splitting statistics. .. 107

Figure 4-41: Intent Violations per time slot [27]. ... 112

Figure 4-42: Intent Violation percentage per time slot [27]. .. 113

Figure 4-43: CPU cost (×) per time slot [27]. ... 114

Figure 4-44: Bandwidth cost (×) per time slot [27]. ... 114

Figure 4-45: Deployed components per provider over time [27]. .. 115

Figure 5-1: 6Green observability framework architecture. .. 116

Figure 5-2: Classification of signals into metrics, logs and traces [28]. ... 117

Figure 5-3: Data representation. ... 118

Figure 5-4: Application/Service representation. .. 118

Figure 5-5: Profiling Power Consumption. ... 119

Figure 5-6: Example of a Rating Operator use case. ... 120

Figure 5-7: Illustration of Rating Operator providing metrics transformation at various architectural levels. 121

Figure 5-8: Total CPU utilization (%) with 0.1% threshold, influencing data collection frequency. 123

Figure 5-9: Categorization and mapping of the kernel level metrics. ... 126

Figure 5-10: Power consumption of both the host (left) measured by the Raritan and RAPL and of the Iperf

server/ client (right) measured by Scaphandre and the MDAF while the Iperf bitrate varies from 1 Gigabit/s to

1 Mbit/s. .. 127

Figure 5-11: Node power consumption. .. 128

Figure 5-12: Host power vs Aggregation of processes/containers. ... 128

Figure 5-13: Containers. ... 128

Figure 5-14: Containers (table). ... 129

Figure 5-15: Containers (state timeline). .. 129

Figure 5-16: Pods. .. 129

Figure 5-17: Horizontal pod scaling test. .. 130

Figure 5-18: Scaphandre dashboard. .. 130

Figure 5-19: OCP observability dashboard with Kepler integrated. .. 131

Figure 5-20: DPDK l3fwd app running on single node OpenShift with Kepler integrated. ... 131

Figure 5-21: Traffic profile generated with Pktgen. .. 132

Figure 5-22: “Power monitoring / Overview” dashboard page. .. 132

Figure 5-23: “Power monitoring / Namespace” dashboard page. .. 133

Figure 5-24: CPU/RAM usage and carbon footprint monitoring. .. 134

Figure 5-25: Energy consumption breakdown by network element, 2025 [35]. .. 134

Figure 5-26: ML energy consume prediction. .. 135

101096925 – 6Green – HORIZON-JU-SNS-2022 9 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-27: Power vs threads, CPU frequency and Memory [39]. ... 137

Figure 5-28: 5G/6G Pilot Environment. .. 137

Figure 5-29: Measuring power consumption taking into consideration end-to-end perspective. 138

Figure 5-30: Measuring the power consumption of the 5G system, breaking down the hardware and software

components (and indicative view on relations and dynamics of power consumption at different components while

testing with cyclic network load). .. 139

Figure 6-1: The 6Green SBA framework. .. 140

Figure A-1: Operations required to create a core with the UPF provisioned in a VM. ... 148

Figure A-2: Operations required to create a core with the UPF provisioned in a pod. ... 149

Figure A-3: Operations required to add a DNN. .. 150

Figure A-4: Operations required to add a slice with the UPF provisioned in a VM. .. 150

Figure A-5: Operations required to add a slice with the UPF provisioned in a pod. ... 151

Figure A-6: Operations required to add a TAC with the UPF provisioned in a VM. ... 152

Figure A-7: Operations required to add a TAC with the UPF provisioned in a pod. .. 153

Figure A-8: Operations required to add a UE. .. 154

Figure A-9: Operations required to delete a TAC with the UPF provisioned in a VM. .. 154

Figure A-10: Operations required to delete a TAC with the UPF provisioned in a pod. ... 155

Figure A-11: Operations required to delete a slice with the UPF provisioned in a VM. ... 156

Figure A-12: Operations required to delete a slice with the UPF provisioned in a pod. ... 157

Figure A-13: Operations required to delete a core with the UPF provisioned in a VM. ... 158

Figure A-14: Operations required to delete a core with the UPF provisioned in a pod. ... 158

List of Tables

Table 1: Weighted Adjacency Matrix. ... 25

Table 2: Mean and standard deviation of the power in watts when scaling with different frequencies. 36

Table 3: Notation used in the section. The last two rows are used only with Stateful FaaS. ... 68

Table 4: Selective Notation and Description. ... 92

Table 5: Network parameters. ... 98

Table 6: Slice parameters. .. 98

Table 7. Simulation Parameters. ... 103

Table 8. Accepted requests per scenario and intent type [27]. ... 113

Table 9: Comparison of the baseline and dynamic groups with different thresholds. ... 123

Table 10: Mean value and standard deviation of the difference in % between the MDAF and the Scaphandre

container power consumption for the Iperf server and client respectively. .. 127

Table 11: Mapping among the Enabling technologies and the components of the SBA. .. 140

Table 12: Short description for the adoption of Enabling technologies per component of the SBA. 141

101096925 – 6Green – HORIZON-JU-SNS-2022 10 of 158

D2.3 – The 6Green Enabling Technologies

Glossary of terms and abbreviations used

Abbreviation / Term Description

AF Application Function

AMF Access and Mobility Management Function

CCMF Cloud-Continuum Management Function

CRD Custom Resource Definition

DAG Directed Acyclic Graph

DNN Data Network Name

eBPF extended Berkeley Packet Filter

EdgeMF Edge-cloud Management Function

FaaS Function-as-a-Service

GRU Gated Recurrent Unit

HPA Horizontal Pod Autoscaler

MaaS Metal-as-a-Service

NEF Network Exposure Function

NRP Network Resource Partition

NSC Network Slice Controller

PCF Policy Control Function

SBA Service Based Architecture

SBI South-Bound Interface

SLO Service Level Objective

SMF Session Management Function

S-NSSAI Single – Network Slice Selection Assistance Information

TSD Time Series Database

UDM Unified Data Management

UPF User Plane Function

URSP UE Route Selection Policy

VIM Virtual Infrastructure Manager

VRF Virtual Routing and Forwarding

WIM Wide-Area Infrastructure Manager

XDP eXpress Data Path

NSI Network Slice instance

EGMF Exposure Governance Management Function

101096925 – 6Green – HORIZON-JU-SNS-2022 11 of 158

D2.3 – The 6Green Enabling Technologies

Abbreviation / Term Description

NSMF Network Slice Management Function

NFMF Network Function Management Function

NFVO Network Functions Virtualization Orchestrator

VNF Virtualized Network Function

CNF Containerized Network Function

101096925 – 6Green – HORIZON-JU-SNS-2022 12 of 158

D2.3 – The 6Green Enabling Technologies

Executive Summary

This deliverable details the final version of the work realized within 6Green towards the specification of a set

of enabling technologies that are adopted towards the development of the 6Green Service Based

Architecture (SBA) in WP3, as well as towards the development of vertical application orchestration

mechanisms in WP4. It builds upon the results provided in the D3.2 that detailed the work in progress in the

implementation of these technologies in M18 of the project.

The set of enabling technologies include:

 network connectivity management and traffic offloading mechanisms,

 cloud-native orchestration mechanisms considering approaches that take advantage of service-mesh

techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps and

continuous automation principles,

 power management mechanisms for the core, transport and access part of the continuum by

considering serverless workloads,

 network slice lifecycle management and optimization techniques, including energy-aware network

slice management in O-RAN and multi-provider settings, and

 green observability and profiling mechanisms.

For all cases, the final status of the development of the enablers is provided. A mapping of the enabling

technologies with their adoption toward the development of the various functions of the 6Green SBA is also

detailed, while information for the developed software prototypes is made available in D2.4.

101096925 – 6Green – HORIZON-JU-SNS-2022 13 of 158

D2.3 – The 6Green Enabling Technologies

 Introduction

This document details the activities carried out in the Work Package 2 (WP2), “Green Enabling Technologies for

Cloud-Native Services” of the 6Green Project. The goal of the 6Green Project is to create an innovative, service-

based, and comprehensive ecosystem that expands the communication infrastructure into a sustainable,

interconnected, and greener end-to-end inter-computing system. It aims to promote energy efficiency across the

entire 5/6G value chain and reduce the carbon footprint of 5/6G networks and vertical applications.

The 6Green Project is structured around three main research axes, which correspond to three administrative

domains/layers within the architecture: the 5/6G Edge-Cloud Infrastructure, the Network Platform and the

Vertical Application domains. The corresponding research areas are referred to as “Enabling Technologies for

Cloud-Native Service Meshes,” “the 6Green Service-based Architecture,” and “Vertical Application Orchestration

within the 5/6G Green Economy.” These axes must closely collaborate to implement the holistic vision of 6Green.

WP2 primarily focused on the activities related to the first research axis of the project: “Green Enabling

Technologies for Cloud-Native Services.” Within WP2, the initial activities involved refining the architectural

definition of the 6Green ecosystem and validating use cases for the technologies and solutions developed by the

project. This includes identifying the roles of different stakeholders, determining system and use cases

requirements, and establishing key performance indicators for the identified use cases.

Following, effort was allocated into the development of a set of enabling technologies to boost green elasticity

(automatically, and rapidly provision, adapt, and de-provision network and (edge) computing resources/artefacts

and hardware offload engines to improve energy efficiency) and edge agility (transparently move

applications/services (or part of them) at run-time in different geographical areas of the edge-cloud continuum)

in the deployment of services and applications over a 6G infrastructure. These enabling technologies include

network connectivity management and traffic offloading mechanisms; cloud-native orchestration mechanisms

considering approaches that take advantage of service-mesh techniques, as well as automation mechanisms

based on infrastructure as a code, ZeroOps and continuous automation principles; power management

mechanisms for the core, transport and access part of the continuum by considering serverless workloads;

network slice lifecycle management and optimization techniques, including energy-aware network slice

management in O-RAN and multi-provider settings, and green observability and profiling mechanisms.

In the current document, the overall work towards the development of such enabling technologies is detailed.

The document builds upon the results provided in the D3.2 that detailed the work in progress in the

implementation of these technologies in M18 of the project. In all cases, the final status of the development of

the enablers is provided. A mapping of the enabling technologies with their adoption toward the development of

the various functions of the 6Green SBA is also detailed, while information for the developed software prototypes

is made available in D2.4.

Per enabling technology, the design of the mechanisms, the implementation status and evaluation results are

provided. With this objective in mind, this document is organized as follows. Section 2 details the connectivity and

traffic offloading enablers for managing data traffic to optimize performance, reduce congestion, and enhance

the user experience across resources in the computing continuum. Section 3 details enablers that support

orchestration actions for the management of cloud-native software, including enablers that support automation

in the management of compute and network infrastructure in 5G/6G environments. Section 4 details power

management and network slice lifecycle management techniques by considering serverless workloads. Section 5

details data fusion, profiling and observability mechanisms. Section 6 provides a short mapping of the detailed

enabling technologies with the 6Green Service-based Architecture (SBA), while Section 7 concludes the document.

101096925 – 6Green – HORIZON-JU-SNS-2022 14 of 158

D2.3 – The 6Green Enabling Technologies

 Connectivity and Traffic Offloading

2.1 Traffic Offloading to Hardware Acceleration-Based UPF by Control Plane

Service Exposure

Traffic offloading in 5/6G networks refers to the process of redirecting data traffic to alternative pathways

to optimize performance, reduce congestion, enhance the user experience, or change user plane technology.

Traffic offloading is a crucial feature for allowing Green Elasticity, as the energy-aware usage of hardware

accelerators cannot be applied unless traffic is redirected accordingly.

During the 6Green activities, traffic offloading has been designed and implemented through the development

of an evolved Network Exposure Function (NEF) prototype. Initially introduced in D2.2 and further detailed

in this section, the prototype is tailored specifically for the 6Green SBA. It implements the traffic offloading

mechanism in alignment with the 3GPP standard, particularly referencing TS 29.502 and TS 29.522 for the

API specifications. The traffic offloading procedure leverages the URSP rule modification applied within the

Service parameter provisioning service, as defined in D2.2. However, to better support the needs of 6Green,

this service has been extended and slightly adapted to offer greater flexibility for slice offloading, by working

on slice change for a set of UEs.

Unlike the approach described in Section 2.1.1 of D2.2, the service in 6Green is no longer referred to as

Nnef_ServiceParameter. Instead, it has been evolved and renamed as Nnef_SliceOffloading, to more

accurately reflect its role of changing slice for specific UEs, within the 6Ggreen framework. In the next section,

further detail about the implementation is provided.

2.1.1 Slice Offloading Mechanism within the 5GC

The legacy 3GPP standardized Service Parameter provisioning mechanism in 5GS enables external entities to

supply service-specific parameters for single UE, facilitating its traffic steering. This is particularly effective

when combined with (AF)-guided URSP rules, which allow for tailored routing of third-party application

traffic. As described in the previous section, in the context of 6Green Project, this mechanism has been

enhanced to introduce dynamic traffic steering capabilities.

The innovation lies in the ability to incorporate new input parameters such as the originating network slice

or DNN, allowing multiple UEs belonging to such domains (S-NSSAI or DNN) to be moved from a slice to

another one. This is possible exploiting the availability of management APIs exposed by 5G Core Networks.

In this activity we utilized the HPE Aruba Networking Private 5GC, which provides dedicated provisioning APIs

allowing configuration changes (e.g., slice assignment for UE profiles).

The developed Nnef_SliceOffloading service leverages some information coming from the CN and the actual

request from the service consumer.

Figure 2-1 illustrates the complete flowchart of the functional slice offloading procedure. The process

requires two main inputs: information from the client request (i.e., destSliceList and target) and the

provisioning data from the core network (i.e., profileList and subscriberList). The first step involves extracting

the actual destination slice (destSlice), and related provisioning profile (destProfile) among the candidate ones

included in destSliceList. The second step focuses on identifying the target UE or set of UEs. Based on the

target type (GroupID, Slice, supi, gpsi, ipv4) included in the request, the algorithm selects the appropriate

procedure to obtain the list of UEs (or a single UE) whose profiles need to be updated with the one including

the destination slice. If a UE already has a profile that includes the destination slice, it is simply excluded from

further processing.

101096925 – 6Green – HORIZON-JU-SNS-2022 15 of 158

D2.3 – The 6Green Enabling Technologies

Figure 2-1: Flowchart representation of the Slice offloading procedure.

101096925 – 6Green – HORIZON-JU-SNS-2022 16 of 158

D2.3 – The 6Green Enabling Technologies

2.1.2 Validation

The slice offloading procedure was evaluated using a single User UE. The tested Core Network was based on

the HPE Aruba Networking Private 5G Core (HPE 5GC).

The UE's data was provisioned in the 5GC and initially assigned to Profile 1, associated with Slice 1-000001.

A second profile (Profile 2) was configured and linked to Slice 1-000002. Each slice was mapped to a dedicated

UPF, enabling traffic redirection upon slice switching. UERANSIM was used to emulate both the gNB and the

UE, with the gNB configured to support both slices.

Phase 1: UE registration and PDU session establishment to Slice 1

As shown in Figure 2-2, the UE has been successfully connected to the initial Slice 1. A ping test was

performed to check the connectivity and traffic.

Figure 2-2: AMF information regarding UE connectivity status.

Phase 2: Execution of NEF and tools for interfacing with the 5GC

Figure 2-3 illustrates the execution of the software prototypes. On the right side, the NEF Python application,

including the SliceOffloading service, is show. On the left, the ProxyAPI component is depicted, acting as an

interface layer to communicate with the 5GC APIs.

The NEF application is configured to interact with the ProxyAPI when API access is required. The ProxyAPI is

already bound to the 5G Core, as indicated by the green status confirmation.

Figure 2-3: Terminal output with execution logs of ProxyAPI (left) and NEF prototype (right).

101096925 – 6Green – HORIZON-JU-SNS-2022 17 of 158

D2.3 – The 6Green Enabling Technologies

Phase 3: Slice offloading request from client

The functional test proceeded with the execution of the slice switch request using Postman. The request

body (see Figure 2-4) includes the essential parameters required to trigger the slice transition:

 GPSI, used to uniquely identify the target UE

 Route slice information, specifying the combination of DNN and S-NSSAI values, which will be

mapped to an available destination profile to be assigned to the UE.

These parameters were processed by the NEF application to initiate the slice offload procedure for the

selected UE.

Figure 2-4: SliceOffload request body.

Phase 4: SliceOffloading procedure and results

Once the request was triggered, the SliceOffloading service executed the slice switching logic by interacting

with the 5G Core through the ProxyAPI component. Upon successful assignment of Profile 2 to the UE,

subsequent user traffic was redirected through the second UPF, as defined by the new slice configuration.

Figure 2-5 shows the traffic handled by the two UPFs, visualized through Grafana plots. The transition of

traffic from Slice 1 to Slice 2 is clearly observable, confirming the effectiveness of the offloading procedure.

In order to activate the new slice configuration, the UE was detached and subsequently re-attached. This

procedure is necessary to ensure that Profile 2 was correctly applied, enabling user traffic to be routed

through the second UPF associated with Slice 2.

101096925 – 6Green – HORIZON-JU-SNS-2022 18 of 158

D2.3 – The 6Green Enabling Technologies

Figure 2-5: UPF 1 (above) and UPF 2 (below) user traffic.

2.2 Connectivity Enablers in the Transport Network

2.2.1 Architecture

One of the key enabling technologies in the 6Green SBA is related to providing the connectivity between all

the elements in the architecture. This means covering network connectivity aspects at cloud and in the

transport network. The element responsible for managing the operation of the wide area networks that

reach to the cloud is the Wide-Area Infrastructure Manager (WIM).

The WIM oversees orchestrating and managing the transport network infrastructure. It acts as a central

entity that controls and configures the connectivity between the different NFVI points of presence in the

6Green SBA architecture. It sets and manages links, routes, and network resources required for the

communication between endpoints in the 6Green SBA architecture. The WIM is a key element in managing

the connectivity between sites, as it will provide the network slice connectivity at transport level to fulfil the

needed requirements of the verticals.

The WIM is involved in the slice realization workflow as follows: upon a slice request, the Network Slice

Management Function (NSMF) interacts with the WIM in accordance with the 3GPP TS 28.541

specification [1]. This interaction includes the identification of the network functions involved in delivering

the end-to-end slice, as well as the specific slice requirements across the Core, Transport, and RAN domains.

Based on this information, the WIM is responsible for establishing the required transport connectivity and

for ensuring that the requested Service Level Objectives (SLOs) and Service Level Expectations (SLEs) are

fulfilled within the transport domain. The WIM is complemented with a new element called Network Slice

Controller (NSC). This new component, defined by IETF [2] is in charge of orchestrating the request,

realization and lifecycle control of network slices at transport level. This component translates the abstract

slice service requirements to concrete technologies and establishes required connectivity ensuring that

101096925 – 6Green – HORIZON-JU-SNS-2022 19 of 158

D2.3 – The 6Green Enabling Technologies

resources are allocated to the transport network slice as necessary. It will provide the connectivity in

situations such as:

 Extending the connectivity to the cloud and edge by deploying virtual routing and forwarding (VRF)

instances. This interaction is complex because many components and resources in the SBA

architecture are virtualized on bare metal servers in the cloud. Consequently, communication is

abstracted, using virtualized rather than physical interfaces. This requires interaction with the Virtual

Infrastructure Manager (VIM), which has the context and knowledge about the mapping of cloud

components.

 Providing connectivity and redirection of traffic among the different UPF deployed in the 6Green SBA

architecture.

 Providing connectivity in the transport domain upon slice requests involving Decarbonization Level

Objectives (DLOs), defined in D4.1. This use case is further developed below.

The NSC comprises two modules: the mapper and the realizer. The mapper processes the customer's request,

contextualizing it within the IETF transport network. The realizer then translates this request into a practical

implementation of the transport network, fulfilling the slicing request by interacting with the associated

network controller within the network.

The request received by the NSC originates from a 6G vertical seeking an end-to-end slice with specific

requirements. This request is managed by the 6G end-to-end orchestrator, which configures the RAN and

Core Network elements accordingly before passing the request to the NSC for processing. The NSC then feeds

the relevant wide area network controllers to implement the network slice within the transport network. The

architecture of this component is depicted in Figure 2-6.

Figure 2-6: WIM Architecture.

101096925 – 6Green – HORIZON-JU-SNS-2022 20 of 158

D2.3 – The 6Green Enabling Technologies

The mapper handles client network slice requests and correlates them with existing slices. The workflow is

as follows: when a slice request is received, the mapper translates it from 3GPP NRM [1] terms into the IETF

NBI data model [3]. This involves identifying the service demarcation points (SDPs) that define the

connectivity within the transport network. After identifying and mapping these parameters, the next step is

to check the feasibility of implementing the slice request.

To realize a slice, an existing network resource partition (NRP) that meets the specified slice requirements is

needed, which may not always be available. Feasibility information is retrieved from an external module,

beyond the scope of this definition, which provides a response regarding the feasibility of realizing the slice.

If no suitable NRPs are available for instantiating the slice, the mapper requests the realizer to create a new

NRP. This involves interacting with the wide-area network controllers responsible for the transport network

managed by the NSC. This process is iterative until the mapper determines that the slice realization is feasible.

The realizer module handles the actual implementation of each slice by interacting with specific wide-area

network controllers. It receives requests from the mapper and decides on the technologies to use for

instantiating the slice based on the selected NRP associated with the slice.

2.2.2 Validation

To evaluate the NSC, it is presented within the context of one of the previously introduced use cases, in which

the NSC is responsible for providing a transport network slice that fulfills “green” requirements, also known

as Decarbonization Level Agreements (DLAs)—namely, carbon emissions, energy consumption, energy

efficiency, and the use of renewable energy sources. It is assumed that the slice request originates from the

NSMF component in the form of an intent, following the 3GPP TS 28.541 specification [1].

Additionally, it is assumed that the WAN is managed by the TeraflowSDN controller [4], and that a separate

component, referred to as the energy planner, is responsible for computing the most energy-efficient path

that satisfies the slicing request requirements.

For the purpose of the evaluation, the planner has been integrated into the NSC. However, as a similar

component based on a Path Computation Element (PCE) with energy-aware capabilities has been developed

within the 6Green Project by Ericsson, the NSC is fully compatible and capable of interfacing with this

alternative solution. The architecture of this use case is presented in Figure 2-7.

The overall workflow is resumed as follows:

1. The NSMF, upon a slice request coming from a vertical, sends the slice intent for the NSC to handle in the

transport domain a slice between endpoints A and B.

2. The NSC translate the intent an IETF Slice Service Request [3] and sends it to the planner component.

3. The energy planner component, retrieves energy metrics from Teraflow to perform calculations.

4. With this information, the planner is able to obtain the optimal traffic path that meets the specified

requirements in the intent.

5. The planner sends this path to the realizer.

6. The realizer sends a request to TeraflowSDN for creating a layer 2 VPN to realize the slice in the cloud

continuum wide area.

Firstly, as mentioned before, the process is triggered by the slice intent coming from the NSMF, following the

3GPP TS 28.541 specification. This specification defines the endpoints of the request, which, for this use case,

are A and B, and 4 main slice requirements, defined a Decarbonization Level Agreements (DLAs):

 Energy Consumption, equivalent to the EC indicator, expressed in Joules or kWh [EC].

 Energy Efficiency, equivalent to the EE indicator, expressed in Watts per bits per second [EE].

 Carbon Emissions, expressed in grams of CO2 per kWh [CE].

 Usage of Renewable Energy, expressed as a rate [URE].

101096925 – 6Green – HORIZON-JU-SNS-2022 21 of 158

D2.3 – The 6Green Enabling Technologies

Figure 2-7: Validation Architecture.

For more detail about these parameters, see 6Green D4.1 [5]. An example of a slice service profile with DLAs is

presented below. Note that no other SLOs (i.e. latency, throughput) are defined in this use case for simplicity.

 "CNSliceSubnet": {

 "networkSliceSubnetType": "CN_SLICESUBNET",

 "SliceProfileList": [

 {

 "sliceProfileId": "GREEN_SLICE",

 "CNSliceSubnetProfile": {

 "EnergyEfficiency": 1e-9,

 "EnergyConsumption": 3000,

 "RenewableEnergyUsage": 0.7,

 "CarbonEmissions": 200

 }

 }

]

 }

101096925 – 6Green – HORIZON-JU-SNS-2022 22 of 158

D2.3 – The 6Green Enabling Technologies

Then, the mapper component in the NSC processes the request and translates it into an IETF Slice Service

request, as shown below.

{

 "ietf-network-slice-service:network-slice-services": {

 "slo-sle-templates": {

 "slo-sle-template": [

 {

 "id": "green_template",

 "description": "",

 "slo-policy": {

 "metric-bound": [

 {

 "metric-type": "energy_consumption",

 "metric-unit": "Joules",

 "bound": 3000

 },

 {

 "metric-type": "energy_efficiency",

 "metric-unit": "GigaWats/bps",

 "bound": 1

 },

 {

 "metric-type": "carbon_emission",

 "metric-unit": "grams of CO2 per kWh",

 "bound": 200

 },

 {

 "metric-type": "renewable_energy_usage",

 "metric-unit": "rate",

 "bound": 0.7

 }

]

 }

....

After that, once the IETF request is generated, it is sent to the energy planner component. There are two

possible deployment options for this component.

 Operation as an external element: interaction with the energy-aware PCE developed in the context

of the 6Green Project. This requires doing a request to /sss/v1/slice/compute endpoint API including

as body a SliceInput object, which contains de following parameters:

o requestId: sequential id of the request

o clientName: the identifier of the client issuing the request

o graph: the descriptor of a service graph, which includes the nodes in which the slice is

deployed (e.g. A and B), the logical link between the nodes implementing the slice topology

and the slice constraints, mapped to the DLOs described above.

101096925 – 6Green – HORIZON-JU-SNS-2022 23 of 158

D2.3 – The 6Green Enabling Technologies

The PCE answers with a SliceInfo object that includes, among other parameters, the path computed

for the requested slice.

 Rely on an internal planner integrated within the NSC: responsible for computing the most energy-

efficient path.

For the purposes of the isolated evaluation of this use case, the internal planner embedded in the NSC has

been chosen for evaluation. Therefore, the description from this point corresponds to the use of this internal

planner.

This way, the energy planner retrieves the energy metrics from the nodes in the topology by requesting

TeraflowSDN to obtain these metrics from all nodes. These are:

 Power consumed by each node in idle state, measured in Watts [Pidle]

 Power consumed by components in nodes (e.g. transceivers, boards), measured in Watts [Pcomponents]

 Energy efficiency of each node, measured in Watts per bit per second [ee]

 Usage of renewable energy, measured as a rate. This data is specific to the plant where the node is

located [ure]

 Carbon emissions, measured in grams of CO2 per kWh. This data is specific to the plant where the

node is located [ce]

These values are obtained from the TFS Analytics component, which processes the instantaneous energy

metrics obtained from nodes in the TFS Energy Collector component. See Figure 2-8 for TFS component

architecture. Traffic through the nodes is assumed to be 100 gbps and the measurement time window is

assumed to be one hour long.

Figure 2-8: TFS Components Architecture.

101096925 – 6Green – HORIZON-JU-SNS-2022 24 of 158

D2.3 – The 6Green Enabling Technologies

The YANG model defining the energy metrics collected from nodes is depicted below:

Taking into account the topology in the wide area network (Figure 2-9), the energy planner builds a weighted

graph of the topology (Table 1). The weight of each node is named as Green Index [GI], measured in grams

of CO2, and it defines how “Green” is each node in the topology. The planner computes the shortest path by

applying a Dijstra Algorithm [6]. The formula that the planner uses to compute the nodes’ GI is depicted

below:

𝑮𝑰 = (P𝑖𝑑𝑙𝑒 + P𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 + 𝑒𝑒 × 𝑡𝑟𝑎𝑓𝑓𝑖𝑐) ×
𝑡𝑖𝑚𝑒

1000
× (1 − 𝑢𝑟𝑒) × 𝑐𝑒

module: static-device-energy-tid

 +-- container device

 +-- leaf name string

 +-- leaf typical-power decimal64 (W)

 +-- leaf maximum-traffic decimal64 (Gbps)

 +-- leaf max-power decimal64 (W)

 +-- leaf efficiency decimal64 (W/fps)

 +-- leaf nominal-power decimal64 (W)

 +-- leaf carbon-emissions decimal64 (gCO2/kWh)

 +-- leaf renewable-energy-usage decimal64 (rate)

 +-- list power-supply

 +-- key "name"

 +-- leaf name string

 +-- leaf type string

 +-- leaf capacity decimal64 (W)

 +-- leaf typical-power decimal64 (W)

 +-- leaf nominal-power decimal64 (W)

 +-- list boards

 +-- key "name"

 +-- leaf name string

 +-- leaf type string

 +-- leaf capacity decimal64 (W)

 +-- leaf typical-power decimal64 (W)

 +-- leaf nominal-power decimal64 (W)

 +-- list components

 +-- key "name"

 +-- leaf name string

 +-- leaf type string

 +-- leaf capacity decimal64 (W)

 +-- leaf typical-power decimal64 (W)

 +-- leaf nominal-power decimal64 (W)

 +-- list transceivers

 +-- key "name"

 +-- leaf name string

 +-- leaf type string

 +-- leaf capacity decimal64 (W)

 +-- leaf typical-power decimal64 (W)

 +-- leaf nominal-power decimal64 (W)

101096925 – 6Green – HORIZON-JU-SNS-2022 25 of 158

D2.3 – The 6Green Enabling Technologies

where Pidle, Pcomponents and ee*traffic is calculated based on the studies in [7].

Figure 2-9: Wide Area Network Topology.

A B C D E F G

GI 145 450 282 380 355 242 226

Table 1: Weighted Adjacency Matrix.

Subsequently, the green optimal path is computed as follows:

𝑃𝑜𝑝𝑡 = min
𝑃∈𝒫(𝐴,𝐵)

∑ 𝐺𝐼(𝑣)

𝑣∈𝑃

being v a node of the set

𝑷 = {𝑨, 𝑩, 𝑪, 𝑫, 𝑬, 𝑭, 𝑮}

with the following restrictions taking into account the slice requirements

∑ 𝑒𝑒(𝑣)

𝑣∈𝑃

≤ 𝐸𝐸

∀𝑣 ∈ 𝑃, 𝑢𝑟𝑒(𝑣) ≥ 𝑈𝑅𝐸

∑ 𝑐𝑒(𝑣)

𝑣∈𝑃

≤ 𝐶𝐸

∑ 𝑒𝑐(𝑣)

𝑣∈𝑃

≤ 𝐸𝐶

After the request is sent to the planner, it responds with the following path between A and B (Figure 2-10).

101096925 – 6Green – HORIZON-JU-SNS-2022 26 of 158

D2.3 – The 6Green Enabling Technologies

Figure 2-10: Optimal Path calculated by the planner.

Ultimately, the NSC generates a L2VPN TeraflowSDN service template between the specified endpoints over

the optimal path defined by the energy planner and loads it into TeraflowSDN. If we access TeraflowSDN,

the service is deployed, as shown in Figure 2-11, with the constraints defined in the request. Furthermore,

the specific configurations and the path for traffic is depicted in Figure 2-12.

Figure 2-11. TFS L2 service created

Figure 2-12: Configurations and path for service.

101096925 – 6Green – HORIZON-JU-SNS-2022 27 of 158

D2.3 – The 6Green Enabling Technologies

 Cloud Native Orchestration and Automated Network Infrastructure
Management

3.1 Deployment Aspects

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in 6G

In 6Green, Cloud-native technologies are essential for the efficient operation and optimization of our

complex 5/6G systems, enabling end-to-end (E2E) management and automation services. It is known that 6G

networks aim to enhance wireless network capabilities, delivering higher data rates, lower latency, and

massive connectivity for diverse applications and services. This involves seamless management of network

resources from end devices to core networks, utilizing advanced automation and AI techniques to optimize

performance and efficiency.

The AI/ML is leveraged for predictive analytics, network slicing management, and real-time decision-making,

enhancing automation capabilities. Cloud-native capabilities, enabled through Service-Based Architecture

(SBA), improve modularity and flexibility in network functions and services, based on the following factors:

 Microservices Architecture: Facilitates independent development, deployment, and scaling of

applications, enhancing agility and resilience.

 Containerization: Encapsulates services within containers, ensuring consistency across

environments and simplifying deployment and scaling.

 Orchestration (Kubernetes): Manages the lifecycle of containers, automating deployment, scaling,

and management of containerized applications.

 DevOps Practices: Integrates development and operations teams to improve collaboration and

accelerate service delivery.

 Continuous Integration/Continuous Deployment (CI/CD): Automates the software delivery process,

enabling frequent and reliable updates.

 Service Mesh: Manages service-to-service communication, providing load balancing, service

discovery, and secure connectivity.

In 6Green, we deliver Cloud Native with Green Efficiency supported by Cloud Infrastructure, the Automation

functions across RAN, Core, and Transport systems, streamlining processes and enhancing performance (6G

RAN, 6G Core, and 6G-EDGE). The Dynamic optimization of the resource utilization is also implemented,

ensuring consistent performance and energy efficiency, addressing key metrics such as Quality of Service

(QoS). The general approach is to integrate NF Sets to ensure 6G Service-Based Interfaces (SBIs)

interoperability and flexibility, enabling tailored solutions that meet specific needs and adapt to evolving

technologies and demands. This delivers transformative, flexible consumption of Network Services, providing

a scalable, flexible, and cost-effective way to manage network infrastructure.

The principles rely on virtualized network functions (VNFs) that abstract traditional networking functionalities

into software-based components, with Microservices architecture for modularity, scalability, and agility. The

cloud native invokes the containerization and orchestration, which automate the lifecycle management of

networking containers, ensuring scalability, resilience, and efficient resource utilization. API-Driven

mechanisms are enabled for programmable and automated network management and provisioning. As

implementation of dynamicity and scalability, 6Green allows network resources to scale up or down in

response to changing demand, enabling efficient resource allocation, cost optimization, and improved

performance of network services. The entire ecosystem is based on monitoring and observability

101096925 – 6Green – HORIZON-JU-SNS-2022 28 of 158

D2.3 – The 6Green Enabling Technologies

mechanisms, the tools which provide visibility into network performance, health, supporting the AI/ML data

framework and further the prediction.

6Green empowers the full 6G potential by integrating the sets of NFs and data analytics processes (NSDAF,

NWDAF) through interoperable and APIs. This demonstrates the envisioned service-based architecture and

orchestration that is applied for optimized applications placement and execution in 6G environments,

automated cloud/edge-computing scaling of applications, dynamic creation and maintenance of optimized

services, and automated network infra control of facilities through Infrastructure as Code. 6Green drives

energy efficiency, agility, and innovation in operations.

Cloud Native Orchestration and Automated Network Infrastructure Management for Green Efficiency in

6G example: NSDAF Use Case.

The NSDAF (Network Slice Data Analytics Function) module has been developed within the 6Green Project,

focusing on energy consumption prediction for network slices. The NSDAF aims to infer KPIs, estimate energy

consumption (and carbon footprint) of network slices, including edge-cloud resources hosting vertical

applications, and analyze infrastructure data and network slice metrics.

Data Flow and Architecture:

The NSDAF collects data from various sources:

 Redis DB/Channels: Receives power measurement data for containers and machines, identified by a
unique slice_id.

 Prometheus: Collects infrastructure data (CPU/RAM usage).

 NWDAF/MDAF: Receives KPIs.

Figure 3-1: NSDAF Interactions with other functions.

The collected data is processed and stored in Redis, and a Flask web service exposes REST APIs for retrieving

historical data and future predictions. AI/ML algorithms, specifically ARIMA, are used to forecast energy

consumption.

101096925 – 6Green – HORIZON-JU-SNS-2022 29 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-2: NSDAF data processing.

Specifically, the NSDAF utilizes the ARIMA model for time series energy forecasting, ARIMA models are

temporal dependencies in the data, and the model components are:

 AR (p): Models the relationship with past observations.

 I (d): Applies differencing to make the data stationary.

 MA (q): Models the relationship with past forecast errors.

The ARIMA parameters (p, d, q) can be automatically tuned or set statically.

As described in Figure 3-3, the NSDAF data flows is based on:

Figure 3-3: NSDAF data flows.

 NSDAF collect energy consumption data, aggregates it daily and leverages a prediction model to

forecast future consumption.

 Flask web service with two main endpoints - one for retrieving current historical data and one for

obtaining future predictions.

 Different ML models add flexibility to ensure the model can adapt to the generated data

characteristics.

101096925 – 6Green – HORIZON-JU-SNS-2022 30 of 158

D2.3 – The 6Green Enabling Technologies

 ENIF/ VAO and other systems to easily obtain both historical insights and future predictions through

simple REST API calls.

 NSDAF lead to additional analyses - carbon footprint estimation - applying conversion factors to the

energy data.

 This makes the tool highly valuable for energy monitoring, forecasting, and environmental impact

assessments.

Both actual and predicted energy consumption power measurements are provided through APIs, data is

processed to calculate the daily average energy consumption per slice_id. The Data is returned as a list of

tuples: date string energy value, in float List of available slice_ids should be retrieved. ML algorithms build

forecasts for consumption of components in network slice / level of load or resource usage on specific server

and power consumption related to it.

Figure 3-4: Actual and predicted energy consumption by NSDAF

As described previously, in relation with 6Green (SBIs and APIs) and NFs interworking, the NSDAF delivers

the following outputs:

 GET /slice_ids Endpoint: returns a list with all slice ids available in order to return energy metrics per

slice ids

 POST /current_power_mircowatts Endpoint responds to POST requests by returning historical

energy consumption data

 POST /predicted_power_microwatts Endpoint forecasting future energy consumption

 POST /cpu_usage Endpoint extracting CPU usage information (similar RAM/Disk/Net)

An example of cloud native Orchestration and Automated Network Infrastructure Management for Green

Efficiency, APIs implementation of NF level is provided in Figure 3-5.

101096925 – 6Green – HORIZON-JU-SNS-2022 31 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-5: NSDAF APIs

The 6G networks bring the promise of network enhanced performance, with an increased focus on

sustainability and energy efficiency. The optimizing energy consumption is possible within cloud-native

environments, in this particular case for multi-tenant deployments. The tenant evaluation explores in this

case the integration of tenants within a cloud-native architecture. At this stage, the tenant integration is

focusing on the achievements results of Network Function Set 1 (NF SET 1) and the evaluation of energy-

related Service Level Indicators (SLIs) and Key Performance Indicators (KPIs).

The energy analytics is treated as a first-class, within the multi-tenant context concern, as tenants are isolated

at runtime (via Kubernetes namespaces/pods) and the relevant resource (containers, VMs, servers) are

labelled with a tenant identifier (slice_id). This labeling lets NSDAF correlate infrastructure metrics (CPU,

RAM, disk, network) with power data on a per-tenant basis, enabling accurate attribution of energy use and

impact. It defines and reports tenant-specific energy KPIs (consumption per unit, reduction, efficiency) and

supports tenant-level reports and dashboards. With respect to this, forecasts are produced for each tenant

(rather than only at slice/system level), and daily aggregation is aligned to tenant identifiers so that both

historical and predicted series reflect tenant behavior. The same REST interfaces described in Section 3.1 are

reused, but the semantics are explicitly per tenant (e.g., /slice_ids enumerate active tenant IDs). An

additional topic is the closed-loop, tenant-aware orchestration, as the NSDAF integrates with ENIF and the

Virtualized Automation Orchestrator (VAO), so energy insights can trigger tenant actions (for example, pre-

emptive scaling or resource rightsizing) with policy control at tenant granularity. In a larger context, the

operators can set energy-aware policies per tenant (e.g., caps, throttles, or prioritization) to support

sustainability targets without imposing uniform rules across all workloads.

3.2 Service Mesh Technologies

With the rising popularity of cloud-native applications, service mesh architectures have emerged to enable

advanced functionalities within PaaS environments. Service meshes rely on sidecars, that are

“accompanying” containers, in particular they allow interacting with other containers by communicating with

their respective sidecars. In a nutshell, their main features are i) connectivity, including service discovery, ii)

monitoring, through tools such as Prometheus, and iii) security, with ad-hoc policies to manage accesses.

In the context of 6Green, the service mesh paradigm has been investigated to enable the project’s

innovations on Kubernetes clusters, with special focus on Edge Agility in this phase of the project. Edge Agility

is meant to provide smart, fast, and automated horizontal scalability to vertical application and related slices

across the 5/6G edge-cloud continuum, for example in reaction to a handover event or to move the workload

where more convenient (e.g., to consolidate vApps and slices or to exploit the presence of renewable

sources). In this respect, the first step of interest is the so-called “scale to zero”, that is switching off the pods

101096925 – 6Green – HORIZON-JU-SNS-2022 32 of 158

D2.3 – The 6Green Enabling Technologies

for a certain non-used service for zeroing its, and to quickly resume the operating capacity when needed.

One of the most intuitive ideas is that we can try to pause what is not used, like when we turn off the light

we don't need it.

The main issues to be investigated are the following:

 What happens when some traffic arrives at a service that has been scaled to zero?

 How much time is needed to resume the service? (Scale to zero)

A partial solution to both problems could be the traffic steering to another support cluster/zone where the

service is online, but this requires having a multi cluster environment. In this case we would have all the time

we need for the service to be resumed, but a compromise on the QoS may have to be made (more latency

for the original zone, and more load on the support zone). When the service in the original zone comes up

again, we can steer the traffic back where it should go. A bigger problem arises when dealing with continuous

connections, is it possible to change the destination of the traffic without a service drop? It could be possible,

but this case has to be managed by the application/service.

Another interesting question is when do we need to restore the service? For the sake of simplicity, let's limit

ourselves to the HTTP case. If a request arrives at the service, is it a sufficient reason to restart the service?

For essentials services we could think of delegating the answer to a support cluster (see traffic steering) while,

for not essential services, it may depend on the service provider policy. In any case, the operation of turning

on/off the service multiple time could lead to power consumptions that are higher than the case where the

service is always online. This is why, in some cases, we could think not to respond to a request.

To manage scale to zero operations in this context, the Kubernetes scaling mechanism is not enough since

domain-specific knowledge may be required. To solve this problem, additional tools called Operators can be

installed on the cluster. Operators are software extensions to Kubernetes that manage applications and their

components using custom resources that allow to define application-specific controllers for complex

applications. Controllers are the Kubernetes components that manage the resources lifecycle to bring the

cluster state closer to the desired one.

In the context of 6Green, the operators that we are considering are Knative and KEDA. Knative1 provides a

common toolkit and API framework for serverless workloads, to support the deployment, running, and

management of serverless, cloud-native applications to Kubernetes, but it does not allow to be integrated

on an already running cluster. KEDA2 is a Kubernetes-based Event Driven Autoscaler3. It allows the scaling of

any container in Kubernetes based on various metrics like the number of events needing to be processed. It

is lightweight and can work with standard K8s components such as Horizontal Pod Autoscaler and can extend

functionality without overwriting or duplication. While it natively offers the needed scaling feature, it can

only operate on a per-cluster basis, which would prevent us from scaling in the continuum. When a scale to

zero operation is performed on essential services, the traffic needs to be redirected to a running instance of

the service in another cluster to prevent service interruption. For this purpose, a service mesh should be

installed on the cluster. In 6Green, we decided to rely on Istio as a service mesh, that is described in the next

subsection, followed by a set of evaluation results.

Alongside the traditional Kubernetes networking we have decided to use Istio. This enables us to extend

Kubernetes establishing a programmable, application-aware networking using the Istio provided Envoy

1 https://www.redhat.com/en/topics/microservices/what-is-knative
2 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics
3 https://dev.to/sarony11/hpa-vs-keda-in-kubernetes-the-autoscaling-guide-to-know-when-and-where-to-use-them-m96

https://www.redhat.com/en/topics/microservices/what-is-knative
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics
https://dev.to/sarony11/hpa-vs-keda-in-kubernetes-the-autoscaling-guide-to-know-when-and-where-to-use-them-m96

101096925 – 6Green – HORIZON-JU-SNS-2022 33 of 158

D2.3 – The 6Green Enabling Technologies

service proxy. Beyond this, it allows us to use Monitoring data generated by the sidecars (Envoy proxy) to

energy efficiency scopes (as explained later in the document).

We documented how Istio is working to understand when it is possible to install it, in particular if it possible

to perform a Day-2 installation on a cluster with services that are already running on it.

First of all, the installation is performed using the dedicated Istioctl CLI tool or through the Helm chart. After

this task, the injection of the sidecar must be enabled for every namespace that is needed. Now, if the cluster

is brand new, we do not need to worry about anything, Istio will be working on deployed services. Otherwise,

if some services are already running on the cluster, we will need to change these resources. To understand why,

Istio uses Admission Controllers to intercept APIs calls and in this process, it injects sidecars into running Pods:

 Prior to persistence of Resources

 After the API request has been authenticated and authorized

Scale-to-zero has been implemented by means of a UPF prototype, based on the Berkeley Extensible

Software Switch (BESS4): when the UPF receives a packet directed towards the application deployed on the

“scaled-to-zero” pod, it sends an alert to the pod asking it to scale back up and, in the meantime, it stores

the incoming to give it time to get back up without packet losses. Although the mechanism itself is

straightforward, on the other hand the operation can introduce additional consumptions if the scaling

operation happens too often. The following results allow for an evaluation of such consumption for a better

understanding of how to best apply the mechanism.

3.2.1 Overhead of Container Scaling Operations

Studies have been done to see the advantages in scaling pods to zero when needed by observing the CPU

power consumption. These data are relevant in understanding when it is applicable to horizontally scale

vertical application and related slices across the edge-cloud continuum. In particular, several measurements

and results that have been performed on the CPU power consumption ascribable to the pod deployed on the

Kubernetes Cluster when it scales from zero to one and vice versa with different timings using Intel “Running

Average Power Limit” (RAPL)5[8].

4 https://span.cs.berkeley.edu/bess.html
5 Intel RAPL https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

https://span.cs.berkeley.edu/bess.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

101096925 – 6Green – HORIZON-JU-SNS-2022 34 of 158

D2.3 – The 6Green Enabling Technologies

3.2.1.1 Setup

Figure 3-6: Traffic generation and scaling the pod.

Figure 3-7: Setup used for the tests.

To simulate a server, a NUC PC has been used. This PC was developed by Intel, and it can be used in both

gaming and commercial fields. The mounted processor is an Intel(R) Core (TM) i7-6770HQ CPU @ 2.60GHz.

On top of it, a Kubernetes cluster has been set up on bare metal, with a single node running both as master

and worker, as this configuration better suits the NUC architecture. The operating system installed on it is

Ubuntu 24.04.1 LTS.

101096925 – 6Green – HORIZON-JU-SNS-2022 35 of 158

D2.3 – The 6Green Enabling Technologies

On the other side, to simulate the client, a virtual machine has been instanced using OpenStack6 , which is an

open source set of software components that is used for cloud IaaS, facilitating the control large pools of

networking, the computation and storage of resources and allows to set up the test environment.

In order to assess the CPU power consumption ascribable to the scaling pod, a Python application called

Power Collector7 has been used in the NUC. This application reads the RAPL power counter contained in the

Linux kernel throughout the duration of a test every 1,55 seconds, and then saves them. The pod is deployed

on the NUC using a Rust application8 and requires a NodePort, a Kubernetes service that exposes the

application onto an external IP address to allow the cluster to communicate with the external world.

On the client side, a self-developed Rust application called Packet Generator9 that generates continuous

traffic to be sent to the pod deployed on the server by opening a TCP/UDP socket. This application sends a

packet at 𝑡0 to the pod deployed on the server. If the pod is active, it elaborates the packet receive while

doing some background work and sends an acknowledgement to the client. This goes on until, at time 𝑡𝑖, a

“scale-to-zero” signal is requested by the client. The server scales the pod to zero by deleting the deployment.

All packets sent by the client from here are not elaborated by the server, so they reach a timeout and are

then dropped. This mechanism works as a sort of ping, which is used to monitor if the pod is active or not.

This goes on until at time 𝑡𝑗 a “scale-to-one” signal is sent by the client. The server reactivates the pod by

deploying a new Kubernetes deployment. These operations go on until the end of the test time. This

mechanism can be seen in Figure 3-6.

The Packet Generator application allows the selection of cores to be used in the server during the test, the

kind of background operations it does whether a packet is received or not, and the percentage amount of

background work. It also allows to choose how the packets are handled by the server, such as the packet

elaboration time and the packet elaboration work type, as well as the maximum response time a sent packet

and whether the traffic is TCP/UDP. Furthermore, it permits to set the test duration and when a pod should

be scaled to zero or to one.

The setup adopted for the test is shown in Figure 3-7. The Virtual Machine is exposed to the internal network

by OpenStack by assigning a floating IP to the instance. The IP address assigned to the virtual instance is

192.168.254.166. As for the NUC, the IP assigned to it is 192.168.17.149. As for the Packet Generator, the

type of operation used by the background work and the packet elaboration type is the calculation of prime

numbers. The number of cores used are 8, which is the total amount of cores the NUC has. The elaboration

time of a packet is 1500ms and the max response time of a sent package is 1550ms.

The packets are sent every 1.5 seconds, and test have been conducted by scaling the pod every 15 seconds,

3 minutes, 5 minutes and 12 minutes, and they are compared to when the pod is active with traffic received,

the pod is active while in idle and the pod active with traffic dropped. Each test runs for one hour and a few

minutes and is repeated for each event.

3.2.1.2 Results Evaluation

As mentioned before, results will focus on power consumption. Figure 3-8 to Figure 3-14 show the power
consumption of the server that has been retrieved by the RAPL power counter. Figure 3-8 shows the power
consumption of the pod that stays active and in idle state, without any traffic being received. Figure 3-9 to
Figure 3-12 show the power consumption when the pod scales with different frequencies, and Figure 3-13

6 Openstack https://www.openstack.org/
7 Power Collector https://github.com/nikyjane15/Power_Collector
8 Rust https://www.rust-lang.org/
9 Packet Generator https://github.com/s2n-cnit/pktgen

https://www.openstack.org/
https://github.com/nikyjane15/Power_Collector
https://www.rust-lang.org/
https://github.com/s2n-cnit/pktgen

101096925 – 6Green – HORIZON-JU-SNS-2022 36 of 158

D2.3 – The 6Green Enabling Technologies

shows the pod always active and receiving traffic, while Figure 3-14 shows the active pod receiving traffic
and at certain point it does not receive it anymore.

Focusing on the plots, Figure 3-9 to Figure 3-12, when the pods scales from zero to one there is a spike of
power, which is due to the “waking up” of a new pod upon a scaling up request. This power spike is the same
height in all the plots. This is different from the case shown in Figure 3-8 and Figure 3-13; in these, the power
consumption is flatter. Deploying a new pod means allocating resources and consuming energy in order for
it to do its task. After the spike, the power returns to regime until the next scaling request.

Moreover, when observing Figure 3-14, it can be seen that at 00:30:22 the pod doesn’t receive any traffic
from the client, and the power consumption from that point forward is 8W, the same mean consumption as
Figure 3-8. Comparing it with Figure 3-9 to Figure 3-12, it can be observed that, when the “scale-to-zero”
operation is requested, the power consumption while the pod is down is 4W. This means that scaling pods
down halves the amount of power consumption with respect to leaving the pod up, independently of
whether traffic is transmitted or not.

Another thing worth mentioning is that, by comparing the plots, the power consumption seems to be less
when the pod is active all the time and not receiving traffic, and not when it gets scaled to zero. But when
the pod is active and receives a continuous stream of traffic, the power consumption doubles with respect
to scaling. This can be shown clearly in Table 2 by looking at the mean value in each case. The mean power
consumption of the active pod when it just exists is half with respect to scaling and a third of when the pod
is active and receiving traffic. Furthermore, the power consumption is the same independently of the total
amount of times the pods scales. Looking at the standard deviation, it is worth mentioning that it is much
larger when the scaling is happening due to spikes given by the “wakeups” of the pod.

These results show a supposed advantage in scaling the pod to zero to decrease the overall power
consumption, but this also depends on the application deployed on the pod. If an application has more
overhead when starting up, this could cause a long burst of power consumption before going to regime
instead of a spike of power, which means higher consumption.

Table 2: Mean and standard deviation of the power in watts when scaling with different frequencies.

 Mean Std

Pod active in idle 8 1.28

15 seconds scaling 14 9.79

3 minute scaling 13 9.79

5 minute scaling 14 10.94

12 minute scaling 14 9.82

Pod active with traffic 23 0.1

Pod active with traffic stopped 16 7.65

101096925 – 6Green – HORIZON-JU-SNS-2022 37 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-8: Power consumption when the pod does not receive any traffic.

Figure 3-9: Power Consumption when the pod scales every 15 seconds.

101096925 – 6Green – HORIZON-JU-SNS-2022 38 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-10: Power Consumption when the pod scales every 3 minutes.

Figure 3-11: Power Consumption when the pod scales every 5 minutes.

101096925 – 6Green – HORIZON-JU-SNS-2022 39 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-12: Power Consumption when the pod scales every 12 minutes.

Figure 3-13: Power Consumption when the pod is active and receives traffic.

101096925 – 6Green – HORIZON-JU-SNS-2022 40 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-14: Power consumption when the pod is active, and traffic is stopped.

3.3 Infrastructure as a Code Mechanisms Based on the MetalCL

The MetalCL is devoted to the management and terraforming of the VIMs, operating systems and bare-metal

resources available in a testbed. In the presence of this service, physical servers and hardware network

equipment, as well as their operating systems, can be dynamically managed on demand. The conceptual

framework behind the MetalCL is grounded in the paradigm of Infrastructure as a Code (IaC). In essence, the

MetalCL serves as a versatile tool, enabling the composition of code to define, deploy, update, and destroy

infrastructure elements essential for the realization of diverse projects. One of the prominent facets of the

MetalCL’s application spectrum is its utilization for the orchestration of 5Gbeyond-green initiatives. In this

context, the MetalCL plays a pivotal role as an actuator, facilitating the dynamic alteration of states within

the domain of bare-metal equipment. Furthermore, the MetalCL serves as a dedicated service for managing

and terraforming bare-metal resources, encompassing physical servers and hardware network equipment to

create IaaS and PaaS environments tailored to the specific requirements of 6G and 5G-beyond platforms.

This capability includes overseeing operating systems on servers, configurations in network equipment, and

installing complex distributed applications like Open-Stack and Kubernetes.

The MetalCL operates as an advanced infrastructure management system designed to optimize a wide range

of hardware and software resources. Within its operational framework, the MetalCL is structured around

several key components, each fulfilling distinct roles vital for cohesive resource management and allocation.

These pivotal components include delineated ’Zones,’ which serve as segregated collections of hardware and

software resources with specific functionalities. These zones can be characterized by unique levels of

programmability, defining not only a diverse spectrum of resources but also the level of accessibility and

programmability that can be performed on them: functionality within each zone spans from fundamental

101096925 – 6Green – HORIZON-JU-SNS-2022 41 of 158

D2.3 – The 6Green Enabling Technologies

access to comprehensive management tasks, encompassing server selection, installation, and

reconfiguration of instances.

Zones within MetalCL are tactfully implemented as encapsulated ”plugins”; this architectural approach is

pivotal in maintaining system modularity. By employing plugins, the MetalCL obviates the need for recurrent

service recompilation and prevents the inadvertent introduction of unwarranted dependencies, thereby ensuring

a coherent and adaptable system framework. The linkage between individual OpenStack or Kubernetes instances

and projects is exclusive, establishing clear delineation in resource allocation and management.

The MetalCL interfaces with three external components: the MAAS server the Ansible engine and the NetCL.

The Metal-as-a-Service (MaaS) server, an open source project developed by Canonical10, revolutionizes the

management of individual bare-metal servers, bringing them in line with the administration of virtual

machines within a cloud environment. This service enables the discovery, commissioning, deployment, and

dynamic reconfiguration of extensive fleets of physical servers. With requirements as minimal as an IPMI-like

system11 and support for network boot operations through PXE standards [9], MaaS catalogues and manages

these servers, offering functionalities akin to those in virtualized environments. Operating within MetalCL,

MaaS utilizes its REST APIs to initiate bare-metal level changes, controlling power states and installing (on

demand and as-a-Service) almost any operating system by properly configuring and administering the

network(s) (mainly at the IP layer, while layer 2 interconnectivity and additional functions like gateways and

firewalls are provided by the NetCL service). MaaS exposes a complete set of REST APIs, which are consumed

by the MetalCL to trigger any changes at the bare-metal level.

Some key advantages of MaaS encompass automated remote operating system deployment, centralized

monitoring, rapid provisioning, and tear down of bare-metal server configurations. It proves beneficial for

environments necessitating frequent rearrangements of physical hardware, offering cloud-like agility to bare-

metal setups. MaaS demonstrates its versatility across dynamic bare-metal infrastructure scenarios by

treating physical servers as virtual resources. This approach infuses cloud-like flexibility into bare metal

environments, efficiently handling deployment, modification, and reconfiguration of bare-metal setups.

Integrating MaaS within MetalCL ensures adaptability and responsiveness to the evolving demands of

infrastructure, making it invaluable for applications requiring frequent changes in server topology.

The Ansible Engine12 plays a pivotal role within the MetalCL by driving any software installation, application and

OS reconfigurations over the bare-metal servers installed by MaaS. This engine is the one that provides the

MetalCL with the capability of installing software dependencies and installing and managing, in a zero-touch

fashion, complex distributed software like OpenStack or Kubernetes over one or more servers, overseeing

complex applications by assigning specific server roles, such as the number of controller or compute nodes. The

zero-touch deployment model facilitated by Ansible ensures seamless and automated execution of tasks,

significantly enhancing the efficiency and reliability of server-related operations within the MetalCL framework.

The NetCL serves as a key element for automated discovery, employing the LLDP protocol to uncover the

physical topology. This capability allows it to access the command line or REST interfaces of networking

devices, e.g., interconnection layer-2 managed switches (with VLAN or OpenFlow support), routers

(optionally with the support of virtual routing functions) and firewalls, to enable the configuration of overlay

networks. These networks not only facilitate the seamless hosting of complex platforms like OpenStack and

Kubernetes but also actively manage interconnectivity among servers.

10 https://maas.io/
11 https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
12 https://www.ansible.com/

https://maas.io/
https://www.intel.it/content/www/it/it/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.ansible.com/

101096925 – 6Green – HORIZON-JU-SNS-2022 42 of 158

D2.3 – The 6Green Enabling Technologies

Additionally, the NetCL assumes a pivotal role in network orchestration: it facilitates the automatic discovery

of the physical topology and takes charge of interconnecting layer-2 switches, routers, and firewalls to

establish overlay networks. This functionality is crucial in ensuring the efficiency of connectivity among

servers, thereby significantly enhancing the robustness and stability of the entire network infrastructure.

3.3.1 Power Management Capabilities

At the heart of the MetalCL's resource management capabilities lie two fundamental pillars: the dynamic

adjustment of CPU frequencies and the nuanced manipulation of C-States.

The importance of CPU frequencies lies in their direct effect on computational performance. Higher

frequencies generally mean faster computations, making this parameter essential for a range of tasks.

MetalCL's dynamic frequency adjustment allows users to tailor system performance based on their

application's needs, promoting efficiency and responsiveness. MetalCL's dynamic CPU frequency

management lets users balance the need for quick computations with the goal of minimizing energy use. This

adaptability is valuable when computational requirements vary. Users can adjust the system's performance

in real-time, responding to changes in workload intensity. MetalCL's flexibility in handling different workloads

provides a practical solution for optimizing performance and energy efficiency in dynamic computing

environments. In scenarios like cloud computing, where workloads can change unexpectedly, the ability to

adjust CPU frequencies dynamically is crucial for resource allocation and cost-effectiveness.

C-States, denoting CPU power states, encapsulate a spectrum of power consumption and performance levels

accessible to a CPU. MetalCL, empowers users with the unique capability to finely manipulate C-States. This granular

control enables dynamic adjustments to individual CPU power states, responding adeptly to the ever-changing

demands of diverse workloads.

MetalCL's prowess extends beyond CPU frequency adjustment, as it seamlessly integrates the manipulation of C-

States. C-States, ranging from C0 to Cn, represent a hierarchy where C0 signifies the highest-performance state, and

ascending numbers (C1, C2, etc.) denote progressively deeper levels of power-saving states. This hierarchical

structure allows CPUs to transition intelligently between states, aligning power consumption with the immediate

processing requirements. The dynamic nature of C-State manipulation in MetalCL introduces a new dimension to

power management, offering users a versatile tool to optimize energy efficiency and enhance hardware longevity.

The MetalCL has been recently extended with an API for retrieving information about the underlying hardware

configuration. This architecture information encompasses critical details such as CPU model, number of cores

and threads, cache sizes, CPU vulnerabilities, and more. Understanding these aspects of the CPU architecture

aids in optimizing system performance, identifying potential vulnerabilities, and making informed decisions

regarding hardware provisioning and management. In Figure 3-15, an illustrative example of the output is

provided, while Figure 3-16 depicts a sample of representation of the available governors for a server.

The API facilitates the retrieval of the real time status of governors for each CPU core. This feature allows users

to monitor and adjust the governor settings dynamically, ensuring efficient resource utilization. Figure 3-17

illustrates a sample of the status of governors for individual CPU cores. Additionally, the API offers access to the

current frequency of each CPU core, enabling real-time monitoring of processor performance. This information

allows users to analyze CPU usage patterns and make informed decisions regarding workload distribution and

system optimization. An example showcasing the current frequency of CPU cores can be seen in Figure 3-18.

Two other relevant features are the monitoring of the available and current C-states for each CPU core,

shown in Figure 3-19 and Figure 3-20, respectively. The former, along with detailed information about each

state's characteristics and capabilities, facilitates fine-grained power management strategies., while the

latter provides insights into power-saving behaviours and system efficiency.

101096925 – 6Green – HORIZON-JU-SNS-2022 43 of 158

D2.3 – The 6Green Enabling Technologies

Finally, users can utilize the API to obtain the percentage of time each CPU core has spent in a specific state,

both for a specified interval or over the entire duration of system operation. This data allows for

comprehensive analysis of CPU usage patterns and power consumption trends. Figure 3-21 presents an

example of the percentage distribution of CPU core states.

Figure 3-15: Example output showcasing CPU architecture information retrieved through the API.

Figure 3-16: Representation of the available governors for CPUs retrieved using the API.

101096925 – 6Green – HORIZON-JU-SNS-2022 44 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-17: Monitoring of the status of governors for each CPU core through the API.

Figure 3-18: Illustration of the current frequency of each CPU core retrieved through the API.

101096925 – 6Green – HORIZON-JU-SNS-2022 45 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-19: Visualization of the available C-states for each CPU core retrieved through the API.

Figure 3-20: Real-time monitoring of the status of C-states for each CPU core through the API.

101096925 – 6Green – HORIZON-JU-SNS-2022 46 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-21: Example representation of the percentage distribution of CPU core states retrieved through the API.

The API also offers comprehensive capabilities for monitoring power consumption, leveraging three distinct methods

to ensure accuracy and reliability in data acquisition. The RAPL (Running Average Power Limit) method provides

insights into power consumption at the processor level, offering detailed information about energy usage patterns

and fluctuations, as illustrated in Figure 3-22. Additionally, the API utilizes the IPMI (Intelligent Platform Management

Interface) protocol to access power-related data from system hardware components, enhancing visibility into power

consumption across various subsystems, as demonstrated in Figure 3-23. Furthermore, sensor-based measurements

enable real-time monitoring of power usage at the hardware level, capturing fine-grained details about energy

consumption in different system components, as depicted in Figure 3-24.

By employing multiple data collection methods, the API enhances the robustness and accuracy of power

consumption monitoring, facilitating comprehensive analysis and optimization of energy usage. This multifaceted

approach enables users to gain deeper insights into power consumption dynamics, identify inefficiencies, and

implement targeted strategies to enhance energy efficiency and sustainability in computing environments.

101096925 – 6Green – HORIZON-JU-SNS-2022 47 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-22: Power consumption monitoring using the RAPL method.

Figure 3-23: Power consumption monitoring utilizing the IPMI protocol.

Figure 3-24: Real-time monitoring of power usage through sensor-based measurements.

Enhancing user experience, a GUI is provided to offer a user-friendly interface for comprehensive system

monitoring. Users can conveniently access a summary of the current governor assigned to each CPU core,

providing insights into power management strategies and workload distribution. Additionally, real-time updates

on the current frequency of CPU cores allow users to track performance fluctuations and optimize system

resources effectively. Furthermore, the GUI provides visibility into the status of various available C-states,

empowering users to fine-tune power-saving configurations for enhanced energy efficiency. Figure 3-25 offers a

visual representation of these monitoring capabilities, showcasing the intuitive interface provided by the GUI.

101096925 – 6Green – HORIZON-JU-SNS-2022 48 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-25: Visual representation of the provided GUI.

3.3.2 Results

The aim of this testing is to analyze the power consumption of a server under different configurations of c-

states and governors. Specifically, we want to understand how altering these settings impacts power usage

both under normal CPU loads and under maximum CPU stress.

In the initial configuration, the C-state is set to State0, and the governor is set to Performance. The system is

operating under normal load conditions. Upon changing the governor to Powersave, there is a noticeable

decrease in power consumption from 371.24 W to 249.18 W, as depicted in Figure 3-26. This demonstrates

the impact of governor settings on power usage when the system is not fully loaded.

Figure 3-26: Comparison of power consumption before and after changing the governor to Powersave with normal
system load.

101096925 – 6Green – HORIZON-JU-SNS-2022 49 of 158

D2.3 – The 6Green Enabling Technologies

With the governor set to Powersave and increasing the system load to 100%, the power consumption rises
to 263.45 W, as shown in Figure 3-27. This illustrates that even with a Powersave governor, power
consumption increases under full load conditions.

Figure 3-27: Power consumption with the Powersave governor under full system load, illustrating increased power
usage compared to the previous configuration.

After changing the governor back to Performance while maintaining the 100% system load, the power

consumption further increases to 407.23 W, as seen in Figure 3-28. This emphasizes the role of the governor

in influencing power consumption under varying workloads.

Figure 3-28: Power consumption spikes after reverting the governor back to Performance while maintaining full system
load.

When the C-state is changed to All while the system is not under full load, the power consumption decreases

significantly to 177.43 W, as depicted in Figure 3-29. Enabling all C-states allows for better power

management when the system is idle.

101096925 – 6Green – HORIZON-JU-SNS-2022 50 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-29: Significant decrease in power consumption with all C-states enabled under normal system load conditions.

Even with all C-states enabled, when the system load is increased to 100%, the power consumption rises

notably to 407.11 W, as shown in Figure 3-30. This highlights that while C-states can help in reducing power

consumption during idle states, they may not have a significant impact when the system is under heavy load.

Figure 3-30: Power consumption increases notably under full system load even with all C-states enabled.

With the governor set to Powersave and the system not fully loaded with all C-states enabled, the power

consumption is 172.13 W, as indicated in Figure 3-31. This likely demonstrates a lower power usage

compared to the Performance governor under similar conditions.

101096925 – 6Green – HORIZON-JU-SNS-2022 51 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-31: Lower power usage observed with the Powersave governor and all C-states enabled under normal load
conditions.

Under 100% system load with the governor set to Powersave and all C-states enabled, the power

consumption is 261.25 W, as shown in Figure 3-32. This figure illustrates the power consumption increase

compared to the previous figure due to the higher workload. But as the governor is set to Powersave, we see

that this increase is not as much as the time that the governor is set to Performance.

Figure 3-32: Increased power consumption under full system load with the Powersave governor and all C-states
enabled compared to the previous configuration.

When the C-state is changed to only State2 while the governor remains as Powersave, the power

consumption reaches to 193.72 W, as observed in Figure 3-33. This highlights the influence of specific C-state

configurations on power efficiency.

101096925 – 6Green – HORIZON-JU-SNS-2022 52 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-33: Power consumption with specific C-state configuration (only State2) and Powersave governor under
normal load conditions.

By setting the governor to Ondemand while C-states are set to all and with the system load at 100%, the

power consumption increases to 406.03 W, as shown in Figure 3-34. This demonstrates that the Ondemand

governor can reach maximum power consumption levels when the workload is at 100%, similar to the

Performance governor configuration.

Figure 3-34: Power Consumption with Ondemand Governor and All C-states Enabled Under Full System Load.

3.4 ZeroOps and Continuous Automation Based on the NFV Convergence Layer

(NFVCL)

The NFVCL is a network-oriented meta-orchestrator, specifically designed for zeroOps and continuous

automation. It can create, deploy and manage the lifecycle of different network ecosystems by consistently

coordinating multiple artefacts at any programmability levels (from physical devices to cloud-native

microservices).

101096925 – 6Green – HORIZON-JU-SNS-2022 53 of 158

D2.3 – The 6Green Enabling Technologies

In detail, a network ecosystem like the one in Figure 3-35 is meant to be a complete functional network

environment, such as a 5G system, an overlay system for network cybersecurity or a simple application service

mesh. For their nature, these environments are realized through heterogeneous Network Functions (xNFs –

i.e., Physical NF, Virtual NF and cloud-native Kubernetes NF), which are usually to be realized over highly

distributed infrastructures. More specifically, every network ecosystem can be thought of as a graph 𝒢 =

〈𝒱 ∪ 𝒩, ℰ〉, where the vertexes are composed of the sets of xNFs instances 𝒱 and the sets of interconnection

networks 𝒩, while the ℰ represents the interconnectivity edges between xNFs and networks.

As defined in the ETSI NFV standard, xNFs are managed by the NFVO through end-to-end Network Service

Instances. Every Network Service can include one or more xNF instances, and it is meant to be deployed over

a single geographical facility, which may correspond to a computing facility and/or a physical device (e.g., a

gNodeB, an O-RAN Radio Unit, a P4 switch, etc.).

The graph 𝒢 of a network ecosystem, represented in Figure 3-36, is meant to be annotated with “anchors”

that represent the placing/binding of the ecosystem endpoints over the physical infrastructure topology. An

anchor can be associated to a network in the 𝒩 set, or to a PNF to be instantiated over a physical device.

Moreover, Figure 3-35 and Figure 3-36 highlight the support for having different levels of virtualization which

can be exploited by the NSs. Platform as a Service (PaaS) allows the deployment of KNFs, Infrastructure as a

Service (IaaS) of VNFs and finally Metal as a Service (MaaS) allows to bypass virtualization and to deploy

services directly on the Hardware (e.g., a Kubernetes bare-metal cluster).

Figure 3-35: A Network ecosystem instance composed of 5 Network Services made up of a variable number of xNFs.

Figure 3-36: The graph of a network ecosystem with anchor points highlighting the link between the xNFs and the
physical infrastructure.

Network Ecosystem Instance

Network Service Instance

Network Service Instance

Network Service Instance

Network Service Instance

Network Service Instance

101096925 – 6Green – HORIZON-JU-SNS-2022 54 of 158

D2.3 – The 6Green Enabling Technologies

3.4.1 The Network Ecosystem

The NFVCL has been built over a modular and flexible architecture that can be easily extended to support

new xNF and ecosystems. At the foundations of this architecture, the metamodel in Figure 3-37 has been

specifically designed to augment extensibility and flexibility and to drive clear interaction patterns among the

different internal modules during LCM operations.

Still with reference to Figure 3-37, every ecosystem instance is built through a Blueprint, which on its turn

falls into a Category. The Blueprint Category corresponds to the high-level network ecosystem function type,

like a 5G system, a network security tool-chain, etc. The Blueprint is meant to support ad-hoc operations for

specific implementations falling into that Category. For instance, the NFVCL currently provides 4 different 5G

system implementations, based on different open-source projects, namely Free5GC, Open5GS, OpenAir

Interface and SD-Core.

The Blueprint Category allows to have a homogeneous north-bound interface against the different

implementations available for an ecosystem, since it defines a single input meta-data model (including the

possible ecosystem end-points) and the associated ecosystem-level LCM methods. For example, the 5G

System Blueprint Category exposes operations to add/remove/reconfigure RAN over specific geographical

areas, to create/modify/destroy network slices, etc., and it fixes the end-points to be physical devices like

base stations or O-RAN radio units, and networks to be used as 5G DNN.

A Blueprint provides the implementation-specific means to support the Category methods and to

translate the metadata model into sets of NSIs and xNFs, interconnected and running with coherent (but

implementation-specific) configurations. To this end, Blueprints defines the template of the ecosystem

internal topology, as well as the specification of the internal procedures to be executed for every

supported Category method. These internal procedures are realized as saga pattern interactions among

specific NFVCL modules.

A Blueprint contains a lot of data that can be categorized in:

 Status: contains information on the status of resources (like the list of interfaces with the relative IPs).

 Configurators: the list of configurators (status included) that are created and used by the Blueprint

(Day-0, Day-2, Day-N).

 Topology: the information on the topology in which the Blueprint is deployed.

The code of a Blueprint class is the one managing how, and in which order, Resources are generated. The

Blueprint instance is also managing Day-2 operations like adding, updating and deleting a node from the

blueprint instance. The new Blueprint system abstracts the concept of Provider, offering a uniform set of

functions to every type of Blueprint. These functions are offering the tools for the LCM of resources

composing the specific instance of that type of blueprint. Since a Blueprint can be composed of both VMs

and K8s resources, the provider interaction is not limited to one, but we can interact with several providers.

101096925 – 6Green – HORIZON-JU-SNS-2022 55 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-37: Network ecosystem metamodel.

The topology template defines the 𝒢 graph pattern including the templates of internal network and of NSIs

that can be applied, and their possible relationship bindings. Everything that is contained in the Topology is

used by the NFVCL to manage the lifecycle of Blueprints. For example, when a Blueprint is deploying VMs,

the VIM to be used is identified using the VIM data saved in the Topology.

Finally, the xNFs metadata model plays a key role in the NFVCL architecture. It defines not only the specific

physical/virtual/Kubernetes deployment units to be used to materialize NS templates, but it also defines the

implementation-specific methods and callbacks that can be executed on an xNF, and the models of its

configuration. In other words, xNF templates represent a sort of glue between NFV-driven LCM operations

to instantiate or remove artefacts from the ecosystem (e.g., creating a RAN NS in a new area), and

management operations affecting the configuration of running xNFs (e.g., add a new 5G subscriber, add a

new policy, etc.).

Each of these operations might include a variable number of different actions to add NSI instances (Day 0

and 1 actions), to change the configuration settings of xNFs and to retrieve information from the deployed

xNFs (Day 2 actions), as well as to remove one or more deployed NSIs.

3.4.2 The NFVCL Architecture

The NFVCL internal architecture (Figure 3-38) encompasses the meta-models introduced in the previous

Section. A first module, named NFVCL North Bound Interface aims at exposing CRUD REST APIs for ecosystem

LCM trough the methods defined in the Blueprint Category meta-models that are available and onboarded

to the NFVCL. Among these methods, the ecosystem creation and deletion are mandatory (and correspond

to HTTP POST and DELETE messages).

101096925 – 6Green – HORIZON-JU-SNS-2022 56 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-38: The NFVCL internal architecture.

The NFVCL Topology offers resources needed by the ecosystems through several lists. The VIM List offers the

possibility to deploy VMs to the NFVCL. This functionality is used by Blueprints to deploy what is requested

by the user (e.g., a K8s cluster with 1 Controller and 2 Workers for a total of 3 VMs). We can have a list of

VIMs associated to an area, in this way, the user can select the area in which the Blueprint will be deployed.

In the case of multiple VIM for the same area, the first one is used. The K8s List contains all the K8s clusters

that can be used by Blueprints to deploy Helm Charts. As for the VIM List, every K8s cluster is associated to

an area and the user can select the one to use. The Net List is used to keep track of the networks available in

the VIMs. Networks can be added manually, if already present, and can be also added and created by a

Blueprint, if needed. The Metric Server List contains Prometheus instances that can be used to configure

metrics exporters on Blueprint Resources. Finally, the Physical Device List contains physical network

functions, for example HW-based UPFs.

The Blueprint Lifecycle Manager takes care of all the requests towards blueprints, from creation to Day-N

operations. This component also allows for cross-blueprint interaction (even creation and deletion).

101096925 – 6Green – HORIZON-JU-SNS-2022 57 of 158

D2.3 – The 6Green Enabling Technologies

The MongoDB database stores all dynamic vital information for the operation of the NFVCL. The two

main collections to be saved are the status for the topology and, for every instantiated blueprint, the

status and the topology template. The saved data of the blueprint can also include past actions, like

executed LCM primitives.

The Blueprint handles and serializes incoming LCM initialization/change requests on the ecosystem. In

particular, it is in charge of binding any supported blueprint category method into a coordinated set of

multiple implementation-specific operation requests against resources in the topology, the LCM of NFV

Network Service Instances (NSI), or configuration changes within one or multiple xNFs.

The Provider Aggregator is a layer in charge of abstracting the virtualization and K8s providers in a single

interface accessible from the blueprint to create and configure its resources. In more details, the

Virtualization/VM Provider is used to deploy the same blueprint type on different VIM types (currently

OpenStack and Proxmox) without the need to adjust the blueprint code, and the K8s/Helm Provider

embodying the same role for Kubernetes.

3.4.3 Blueprint Deployment and Lifecycle Management

At the time of writing, the NFVCL supports three open-source cores: Free5GC, OpenAirInterface (OAI) and

SDCore. Moreover, different deployment options are available for the UPF, namely, as a VM or a or a pod on

a K8s cluster. For the sake of brevity, in the following we will analyse the creation process and the Day-2

operations at a general level, highlighting, if necessary, any operations that are specific for a certain core.

Moreover, excluding the SBA, which is strictly deployed as a pod on a K8s cluster, the other components can

be deployed as VMs or pods. The VM Provider and Helm Provider are the components created to manage

VM and pod operations in the NFVCL. The following description accounts for a case in which gNB and UPF

are deployed as VMs, but the flow charts reported in Annex A report the pod deployment as well. From the

procedure standpoint, the steps are very similar; the implications for the performance are outlined in the

following section.

As mentioned above, the NFVCL can automatically drive the creation of a core, the additional calls performed

by the VM and Helm providers and related lifecycle operations, (hereinafter referred to as Day-0, Day-1 and

Day-2, respectively). It is worth pointing out again that the following description represents completely zero-

touch procedures that produce fully working configurations. The workflows reported in Annex A also show

the number of generated code lines.

The core creation process orchestrates the deployment and configuration of essential 5G core components

using a combination of blueprints and infrastructure providers through the interaction of blueprint modules,

VM and Helm providers. Supported VM providers are OpenStack and Proxmox. This automated workflow

ensures the seamless setup of such essential components, namely the SBA, the router and the UPF.

The operation begins with the GENERIC_CORE Blueprint, which initiates the creation sequence of the

GENERIC_UPF Blueprint. In turn, the UPF Blueprint initiates the creation of the GENERIC_ROUTER Blueprint.

These nested calls are also important during the core deletion phase, because blueprints store a hierarchical

structure of their child blueprints, allowing for the correct deletion of each deployed component.

The VM provider manages the creation and configuration of the router VM, after which the router blueprint

makes its details available via a callable function. Once the router is ready, the UPF blueprint proceeds to

provision its own VM. To enable data routing through the network, the UPF blueprint interacts with the

router blueprint to request the addition of routing information. The router is reconfigured accordingly, and

confirmation is sent once the new routes are in place. Upon successful creation and configuration of the UPF

and routing infrastructure, the UPF blueprint notifies the CORE blueprint, which then queries the UPF for its

101096925 – 6Green – HORIZON-JU-SNS-2022 58 of 158

D2.3 – The 6Green Enabling Technologies

connection details. With this foundational network layer established, the CORE blueprint proceeds to deploy

the core network components by instructing the Helm Provider to install the core Helm chart. This action

represents the deployment of the main 5G core services.

Finally, the CORE blueprint coordinates with the GENERIC_GNB Blueprint to configure it. This involves the

VM Provider once again, which handles the underlying configuration of the GNB VM. When configuration is

complete, the GNB blueprint confirms readiness to the CORE blueprint.

This end-to-end process results in a fully provisioned and configured 5G core network, complete with UPF,

router, gNB, and core services.

To add a DNN, the GENERIC_CORE updates its values according to the new DNN value, then send them to

the Helm Provider to update the pods accordingly.

To add a slice, the GENERIC_CORE updates its values according to new slice value then sends them to the

Helm Provider to update the pods. Once the pods are successfully updated, the GENERIC_UPF Blueprint must

also be updated to align with the new configuration. However, before proceeding with the UPF update, a

routing validation must be performed to ensure that the network paths are correctly established and

consistent with the new slice configuration. Additional operations are required by some of the available

cores. Namely, for Free5Gc is necessary to restart the SMF after each UPF reboot. This is otherwise the

connection between the two components will not be stabilized. OpenAirInterface instead always requires a

UPF restart when core data is changed, which causes pods to restart, for the same reason as Free5Gc.

The addition of a new TAC is initiated by the GENERIC_CORE with the creation of a new UPF instance. Then,

the GENERIC_UPF creates a new router blueprint instance (router_5g). The GENERIC_ROUTER then contacts

the VM Provider to create a new VM for the router. Once the VM is created, it is configured by the VM

Provider.

Next, the GENERIC_UPF asks the VM Provider to create and configure a VM for the UPF component. Once

this VM is ready, the GENERIC_UPF Blueprint requests the GENERIC_ROUTER to add routing rules to enable

data routing. The router instructs the VM Provider to configure these routes, and confirmation is returned

when the configuration is complete.

After the routing is set up, the GENERIC_UPF notifies the GENERIC_CORE that the UPF is ready. The

GENERIC_CORE then retrieves the updated UPF information and uses this data to create new configuration

values for the Helm Provider to update the core Helm chart. The Helm Provider applies the update and

confirms that the values have been successfully updated.

Once the core configuration is up to date, the GENERIC_CORE initiates the configuration of a new GNB by

coordinating with the GENERIC_GNB.

After configuration is completed, the GENERIC_CORE Blueprint acknowledges that the entire process,

including the addition of the new TAC, has been successfully completed.

Adding a UE is different depending on the Core you're considering. SDCore also includes subscriber data

among its values, so in its case, simply adding the new data and launching a pod update will suffice. Free5GC

and OpenAirInterface, on the other hand, have the UDR that exposes the APIs needed to add a new

subscriber. The process for deleting a UE is the same.

To delete a TAC, the GENERIC_CORE call the delete function on the GENERIC_UPF associate at that area. The

GENERIC_UPF also calls the delete function on the GENERIC_ROUTER associate at that area. The

VM_PROVIDER first deletes the GENERIC_ROUTER and then the GENERIC_UPF, after that GENERIC_CORE

updates his configuration and sends it to HELM_PROVIDER to update pods.

101096925 – 6Green – HORIZON-JU-SNS-2022 59 of 158

D2.3 – The 6Green Enabling Technologies

This deletion operation follows the hierarchical structure of the blueprints, allowing for the correct deletion of each

deployed component. The "final_cleanup" function is called as the last operation when deleting a core component

and is used to delete the resources instantiated on the provider on which that component was running.

Deleting a slice begins with deleting it from the core values. It is then necessary to update the values of the

UPF associated with that slice and the routing rules on router.

Deleting a DNN first involves removing it from the GENERIC_CORE values followed by updating the pods. The

same procedures are applied for the addition and deletion of a UE.

The core deletion workflow is initiated by the GENERIC_CORE Blueprint that sends a request to the

GENERIC_UPF Blueprint to delete its blueprint. The GENERIC_UPF Blueprint, in turn, triggers the deletion of

the GENERIC_ROUTER Blueprint. Once the VM is destroyed, the router blueprint performs final cleanup, and

the blueprint is removed. Next, the GENERIC_UPF Blueprint proceeds to request the VM Provider to destroy

its own UPF VM. The VM Provider confirms the VM destruction, after which the UPF blueprint performs its

final cleanup tasks and is marked as deleted. After the UPF has been removed, the GENERIC_CORE Blueprint

coordinates with the Helm Provider to uninstall the core Helm chart. Finally, the GENERIC_CORE Blueprint

performs its own final cleanup. At this point, all the associated components have been properly removed,

and the entire network teardown process is complete.

Results

Several testing campaigns have been run to assess the performance of the NFVCL. Deciding how to carry out

such an assessment is a non-trivial task: the obvious would be to compare the time required for deploying and

performing lifecycle operations on a 5GS manually and in the presence of the NFVCL; however, it is very hard

to compare an automated and a manual operation, as the former is somewhat deterministic while the latter

heavily depends on the skills/speed of the operator. This is likely the main reason why a comparison of the time

it takes to perform lifecycle operation in different open-source cores is not yet available in the state of the art.

Figure 3-39. Execution time of lifecycle operations performed on Free5GC.

0 20 40 60 80 100 120 140 160

create core

create upf1

create router1

add_routes router1

update upf1

add_routes router1

add_dnn

add_slice_operator

add_tac

create upf2

create router2

add_routes router2

add_ues

del_ues

del_tac

delete upf2

delete router2

del_slice

del_dnn

delete core

delete upf1

delete router1

Average Execution Time [s]

O
p

e
ra

ti
o

n
s

K8s VM

101096925 – 6Green – HORIZON-JU-SNS-2022 60 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-40. Execution time of lifecycle operations performed on OpenAirInterface.

Figure 3-41. Execution time of lifecycle operations performed on SDCore.

0 20 40 60 80 100 120 140 160

create core

create upf1

create router1

add_routes router1

update upf1

add_routes router1

add_dnn

add_slice_operator

update upf1

add_routes router1

add_tac

create upf2

create router2

add_routes router2

update upf2

add_routes router2

update upf2

add_routes router2

add_ues

del_ues

del_tac

delete upf2

delete router2

update upf1

add_routes router1

del_slice

update upf1

add_routes router1

del_dnn

delete core

delete upf1

delete router1

Average Execution Time [s]

O
p

e
ra

ti
o

n
s

K8S VM

0 20 40 60 80 100 120 140 160

create core

create upf1

create router1

add_routes router1

update upf1

add_routes router1

add_dnn

add_slice_operator

add_tac

create upf2

create router2

add_routes router2

add_ues

del_ues

del_tac

delete upf2

delete router2

del_slice

del_dnn

delete core

delete upf1

delete router1

Average Execution Time [s]

O
p

e
ra

ti
o

n
s

K8S VM

101096925 – 6Green – HORIZON-JU-SNS-2022 61 of 158

D2.3 – The 6Green Enabling Technologies

In order to proceed with the assessment and, at

the same time, contribute to the body of

knowledge on upcoming 5G technologies, we

decided to first provide a breakdown and a

comparison of the time needed to manage the

lifecycle of three well-known open-source

cores, namely Free5GC, OpenAirInterface (OAI)

and SDCore. Following, we provide a

breakdown of the number of code lines

automatically generated by the NFVCL to

configure the 5GS at runtime to highlight the

benefits of automation. Figure 3-39-Figure 3-41

show the average time (over 10 tests) that it

takes to perform the lifecycle operations

described earlier in this section. Day-0 operations are represented with a dotted pattern, Day-1 with diagonal

stripes and Day-2 is solid. The first, most prominent feature is the higher time required by the cores that

deploy the UPF in a VM, which is experienced for all the cores: indeed, the creation of VMs takes longer than

spawning a pod on K8s. In order to minimize this overhead, the NFVCL allows to work on already available

execution environments and VM images, however the hypervisors are responsible for the additional

deployment time seen in these results.

It is also worth noting that OAI requires additional operations because its UPF contains information

related to the slice, which means it has to be rebooted upon changes to the slices and TACs. OAI is also

less “stable” than the other cores, hence sometimes the same operations need to be repeated in order

to avoid misconfigurations. Free5GC also requires additional operations as the SMF needs to be restarted

upon update of the UPF, but the resulting overhead is negligible and does not emerge from the results

in Figure 3-39-Figure 3-41.

In total, VM deployments take three times as long, as shown in Figure 3-42. Although OAI requires more

steps to perform the same lifecycle operations, the total time that it takes is just slightly higher with respect

to Free5GC and SDCore. On the other hand, while Free5GC and SDCore performs the exact same operations,

their execution times slightly vary: for example, the core creation and deletion take longer for Free5GC but

other Day-2 operations (e.g., UE addition/deletion) take longer for SDCore because Free5GC offers specific

APIs for UE management while SDCore requires pod reboot upon configuration updates.

Further considerations can be drawn by summing the execution times on a per-Day basis and showing the

minimum and maximum values along with the averages, reported in Figure 3-43 (UPF deployed in a pod) and

Figure 3-44 (UPF deployed in a VM). For both VM and pod deployments, Day-0 operations have the highest

deviation from the average, especially for Free5GC. While the three core releases have very similar values in

Figure 3-43, when the UPF is deployed in a VM OAI takes less time than Free5GC and SDCore, because the

Docker setup is more complex and time-consuming, and Free5GC has a less deterministic Day-0 execution time.

Day-1 operations have quite similar minimum, average and maximum values for the three cores, and the

differences among them are almost the same when the UPF is deployed in a pod or in a VM. The same can

be said for Day-2 operations, with OAI taking slightly longer with respect to the other ones especially in the

case of pod deployment.

Figure 3-42. Sum of the execution times categorized in the
above Figures.

208.7

276.4
223.5

687.4

792.8

725.7

0

100

200

300

400

500

600

700

800

900

Free5GC OAI SDCore

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 [

s]

5G Core
K8s VM

101096925 – 6Green – HORIZON-JU-SNS-2022 62 of 158

D2.3 – The 6Green Enabling Technologies

Figure 3-45: Number of code lines generated by the NFVCL for the automated configuration, deployment and
orchestration of the three tested cores.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

OAI Free5GC SDCore

N
u

m
b

er
 o

f
Li

n
es

5G Core

K8s VM

Figure 3-43: Distribution of the execution times for the three 5GSs with the UPF deployed in a pod.

Figure 3-44: Distribution of the execution times for the three 5GSs with the UPF deployed in a VM.

0

20

40

60

80

100

120

140

160

Day-0 Day-1 Day-2

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

Mean_free5gc min_free5gc max_free5gc Mean_oai min_oai
max_oai Mean_sdcore min_sdcore max_sdcore

0

50

100

150

200

250

300

350

400

450

500

Day-0 Day-1 Day-2

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

Mean_free5gc min_free5gc max_free5gc Mean_oai min_oai
max_oai Mean_sdcore min_sdcore max_sdcore

101096925 – 6Green – HORIZON-JU-SNS-2022 63 of 158

D2.3 – The 6Green Enabling Technologies

Finally, it is worth highlighting the most distinguishable feature of the NFVCL, namely automation. Figure

3-45 reports the number of code lines that are created in a zero-touch fashion for the three cores. The

difference between a VM or pod deployment is around 500 lines for all cores, with Free5GC and SDCore

presenting similar values while the OAI deployment requires the generation of more than double code

lines, which is consistent with the higher number of required Day-1 operations. Automation of

configurations is particularly useful during experimentation campaigns: along with the reduced times

achieved by onboarding ready-for-use VMs, it allows experimenters to neglect the specificities of each

core, reducing the time it takes for configuring the tests as well as the chance of errors. For instance, if we

consider the lifecycle of a UPF deployed in a VM, the NFVCL allows to skip the VM creation, installation of

the required, core-specific dependencies, Docker installation, image download and Docker compose

editing. Moreover, it enhances the reproducibility of the tests, as the same configuration can be passed

along and used with minor changes specific to their own execution environment (e.g., network names,

topologies, etc.).

101096925 – 6Green – HORIZON-JU-SNS-2022 64 of 158

D2.3 – The 6Green Enabling Technologies

 Network Slice Lifecycle and Power Management in Serverless
Environments

4.1 Stateful FaaS for Energy Consumption Minimisation

4.1.1 Mathematical Modelling and Analysis

Serverless computing and the FaaS programming model are popular in the cloud [10] and they have attracted

significant interest also at the edge [11]. With FaaS an application is made of a sequence of stateless function

calls, which can be arranged in chains (i.e., f1 --> f2 --> … --> fN) or more complex structures, like DAG [12].

However, realistic applications typically do need function execution to be associated with some state,

especially for edge applications, such as AI and real-time analytics [13].

Figure 4-1: Example of how to realize stateful processing with stateless FaaS.

A straightforward solution to this problem, which we call stateless FaaS, is to maintain the state on an

external storage system to be accessed on demand by the functions as part of their execution, as

explained, e.g., in [14]. Such a deployment option is illustrated in the example in Figure 4-1, where

function f(.) requires input from two dependencies (1 and 2) and has two outputs (3 and 4). When the

function receives input 1, it is kept temporarily in the state storage. Once input 2 is received, full

processing can occur combining the latter with the previous input 1 and the state, to produce the final

outputs 3 and 4, after updating the state on the storage.

1

2 4

3

store (1)

fetch (1)

and state

1

2

3

4

broker
state

storage

p
ro

c
e

s
s

store state

101096925 – 6Green – HORIZON-JU-SNS-2022 65 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-2: Example of stateful FaaS.

In common serverless computing platforms, function invocation happens through an HTTP command issued

on a web server running in a container. Due to the lack of state, the same container can serve multiple

users/sessions seamlessly, and the orchestration platform can easily perform autoscaling of such runners,

i.e., decreasing or increasing the number of instances per function to match the instantaneous demand. An

alternative to this strategy is dedicating each user/session to a runner, thus realizing what we call stateful

FaaS. As illustrated in the example in Figure 4-2, with this model there is no need to fetch/update the state

or store temporary input from previous function calls. In principle, the stateful FaaS model has two

inconveniences. First, the number of runners may be much higher than that with stateless FaaS, because the

former cannot exploit statistical multiplexing of multiple users/sessions like the latter. Second, if a runner is

migrated from one node to another for any reason, e.g., system resource optimization, its internal state must

be moved to the target host.

Figure 4-3: Migration of a stateful FaaS runner from node A to node B.

1

2 4

3

1

2

3

4

caller#1

caller#2

p
ro

c
e

s
s

callee#3

callee#4

orchestrator

ephemeral

state

storage

stop

store

start

fetch

task does not operate properly during migration

(service degradation)

101096925 – 6Green – HORIZON-JU-SNS-2022 66 of 158

D2.3 – The 6Green Enabling Technologies

We show an example in Figure 4-3, where the orchestrator migrates a runner for the function f(.) from node

A to node B. First, when stopping f(.) on node A the state is stored temporarily on an external system, which

is then queried by the new instance of function f(.) on node B upon creation. With this solution, there would

be a period during which the task performed by f(.) is not available. More sophisticated protocols can be

devised [15], but, in any case, they would incur additional complexity or overhead, which is not needed with

stateless FaaS. The impact of state migration on energy consumption is captured by the mathematical model

defined and evaluated later.

Figure 4-4: Deployment of a three-function chain (top) on two processing nodes through stateless FaaS (middle) and
stateful FaaS (bottom).

We now illustrate deployment with stateless vs. stateful FaaS with the help of the example in Figure 4-4, with

a three-function chain application running on two nodes A and B. In the example, we have one runner per

function: node A hosts functions f1 and f2, and node B hosts function f3. With stateless FaaS, an intermediate

node A node B

application

4 6

broker

1

2 3 5 7

8

stateless FaaS deployment

node A node B

5 9

system dataplane

1

3 4 6 10

12

stateful FaaS deployment

loc dplocal dataplane

2 7 8 11

state storage

101096925 – 6Green – HORIZON-JU-SNS-2022 67 of 158

D2.3 – The 6Green Enabling Technologies

layer is needed to dispatch function invocations to one of the matching runners: this is represented by a

logical component called broker, borrowing the terminology from [16], which is an early study on the

realization of distributed computing in pervasive systems. As can be seen, network traffic is generated at

each function call for state access, on the state storage, and for invoking the next runner through the broker.

On the other hand, with stateful FaaS, we need logical components to mesh the runners, which can be within

a node or at a system level. Network access for accessing the state is unnecessary because the state is

embedded within the runner. Furthermore, when a runner invokes another on the same node no network

access is needed, too.

We now define a mathematical model to estimate the energy consumed in a time horizon T for executing

the applications that enter/leave the system during that period. The model is intended to be used to evaluate

high-level deployment strategies and run-time orchestration policies and, as such, it is not intended to

provide quantitatively accurate results, but rather qualitative guidelines to drive algorithm design and high-

level resource provisioning.

Figure 4-5: Application model. An app 𝑎 consists of functions arranged in a graph. If function 𝑢 calls function, 𝑣 then an
edge exists, and its weight 𝑑𝑎𝑢𝑣 is the amount of data exchanged. Each function 𝑣 has a state of size 𝑠𝑎𝑣.

We assume the workload is made of applications (apps for short) that enter and leave the system dynamically

at given times 𝑡𝑎
↓ and 𝑡𝑎

↑ , for app 𝑎. An app 𝑎 consists of some functions (or tasks) arranged in a directed

dependency graph 𝐺𝑎(𝑉𝑎 , 𝐸𝑎). Each vertex 𝑣 ∈ 𝑉𝑎 is a task that depends on its predecessors (incoming edges)

and produces output towards its successors (outgoing edges). The amount of data exchanged when task 𝑢

calls its successor task 𝑣 is 𝑑𝑎𝑢𝑣 , in bits. Without loss of generality, to have a more compact notation, we

assume that the invocation rate is common for all the tasks within app 𝑎 and equal to 𝜆𝑎. Task 𝑣 has an

internal state of size 𝑠𝑎𝑣, in bits, and a processing request equal to 𝑟𝑎𝑣, in fractions of CPU. An example of a

dependency graph is illustrated in Figure 4-5. In the following, we consider the system as dynamic,

characterized by a series of discrete events happening at time 𝑡𝑘 ∈ {𝑡1, … , 𝑡𝑁}, where 𝑡𝑁 is the end of the

period of interest and the other events correspond to an application entering or leaving the system. Between

101096925 – 6Green – HORIZON-JU-SNS-2022 68 of 158

D2.3 – The 6Green Enabling Technologies

two consecutive events the power consumption remains stable (in a statistical sense) and we can

characterize its average value through two step-wise functions, which are constant from time 𝑡𝑘 until the

next event 𝑡𝑘+1 : 𝛼(𝑡𝑘) is number of edge nodes used at time 𝑡𝑘 to serve the active applications, where each

node has a processing capacity 𝐶, in fractions of CPU; 𝛽𝑎(𝑡𝑘) is the average network traffic consumed by

application 𝑎 in the unit of time. We assume that the power consumption of an edge node is binary: if it is

used, i.e., it serves at least one stateless FaaS or hosts at least one stateful FaaS runner, then it consumes a

peak power; otherwise, if it is unused, it does not consume power at all.

Regardless of the deployment strategy, we can then define the total energy consumed in the system as follows:

where 𝑃𝑁 is the power consumption of an edge node and 𝐸𝐵 is the per-bit network transfer energy, and

𝐼(⋅) ∈ {0,1} is an indicator function equal to 1 if and only if the condition is true. We focus on energy

consumption assuming that there are no constraints on the availability of processing and network resources.

In other words, we assume that the system can accommodate all the incoming requests, hence no admission

control is needed. The notation used in the paper is summarized in Table 3.

Table 3: Notation used in the section. The last two rows are used only with Stateful FaaS.

101096925 – 6Green – HORIZON-JU-SNS-2022 69 of 158

D2.3 – The 6Green Enabling Technologies

For stateless FaaS we adopt a simple model that captures well its distinguishing features. Specifically, we

assume that the number of active nodes needed at time 𝑡𝑘 is the minimum possible, i.e.:

where 𝐴(𝑡𝑘) is set of applications active at time 𝑡𝑘. The inner summation is the total processing request of app 𝑎,

which is then summed over all the applications and, finally, divided by the edge node capacity 𝐶. This implicitly

assumes that no edge effects exist in horizontal scalability and the broker layer can distribute the load appropriately

among the multiple task instances. On the other hand, the traffic rate of app 𝑎 at time 𝑡𝑘 is given by:

which is the sum of the traffic generated for the state access (first term) and function invocation between

each node and its successors (second term), in the unit of time, as given by the invocation rate 𝜆𝑎.

The model with stateful FaaS is more complicated because it depends on how tasks are assigned to edge

nodes for three reasons. First, function invocation only consumes network resources if the two tasks are not

assigned to the same edge. Second, since a stateful FaaS runner cannot be split/recombined, assigning the

active tasks to available nodes to minimize the number of nodes used is akin to the bin-packing problem,

which is known to be NP-complete. Finally, as active apps leave the system, fragmentation occurs (a term

inspired by the similar effect in the memory management process of operating systems), i.e., edge nodes are

only partially allocated: this is sub-optimal for energy consumption. To solve this problem, we foresee a

defragmentation process to happen periodically, with the period equal to Δ, which is a system configuration

parameter: during defragmentation, the active apps are rearranged to reduce the number of edge nodes

needed, thus saving energy in the future. However, this process consumes energy because the state of some

runners may have to be migrated from one node to another.

Now we introduce a last bit of notation: let 𝑥𝑎𝑣(𝑡𝑘) be a variable that indicates what edge node (using an

arbitrary indexing scheme) hosts the runner for the task 𝑣 of app 𝑎 at time 𝑡𝑘. In time intervals where the

app is inactive, i.e., before it enters or after it leaves the system, the variable is undefined. The values of

𝑥𝑎𝑣(𝑡𝑘) must be determined through two orchestration decision-making algorithms: i) when an app enters

the system, the algorithm chooses where to deploy each of its tasks, by either selecting edge nodes already

active (hosting other tasks) with sufficient residual capacity or activating new edge nodes; ii) upon

defragmentation, the tasks of active applications can be migrated to other edge nodes to reduce the total

number of the active ones. Determining an optimal policy for either of these decision processes has the same

complexity as finding an optimal allocation for a bin-packing problem, as already mentioned. We propose to

use the following simple heuristic based on the best-fit policy:

Stateful|best-fit algorithm:

 When an app enters the system, for each task we select the active node that hosts one of the

predecessor tasks, if any (to save network traffic for function invocation). Otherwise, we select the

active node that leaves the smallest residual capacity, if any, breaking ties arbitrarily. Otherwise, we

deploy the task on an inactive node.

 Upon defragmentation, we apply the above algorithm policy to all the active apps, in arbitrary order.

101096925 – 6Green – HORIZON-JU-SNS-2022 70 of 158

D2.3 – The 6Green Enabling Technologies

We then derive the number of active nodes at time 𝑡𝑘 as:

where | ⋅ | indicates the cardinality of the corresponding set, and the traffic rate of app 𝑎 at time 𝑡𝑘 is:

The first addend considers the state migration if the task was moved since the previous time event (by design,

this can happen only during the defragmentation procedure) and the second addend considers the network

traffic for function invocation, only if the task 𝑢 and its successor 𝑣 do not belong to the same node.

We conclude the section with the evaluation of the performance, in terms of energy consumption, of the

stateless vs. stateful approaches, indicated as stateless|min-nodes and stateful|best-fit, respectively. For

reference purposes, we also include two alternatives: stateless|max-balancing, as implied by the name,

refers to a stateless FaaS system that seeks to maximize load balancing [17]; stateful|random is a variation

of the stateful policy above, where there is no periodic defragmentation and the tasks of incoming apps are

assigned to edge nodes at random, respecting the maximum capacity , and a new node is made active only

if there is none with sufficient residual capacity. For full reproducibility of results, the source code of the

simulator and the scripts and artifacts are available publicly as open source on GitHub13.

The workload is created following the model in [18], which is inspired by real traces made available by Alibaba

and broadly used in the literature, tuned as follows: the arrival and lifetime of apps follow a Poisson

distribution, with average 1 s and 60 s, respectively; both the state size and the data invocation size are

derived from the memory requirements produced by [18], by applying multiplicative factors called 𝑆 (state)

and 𝐷 (data invocation), where 𝐷 is always set to 100, which corresponds to the range [2, 303] kB, and 𝑆

is expressed through the ratio 𝑆/𝐷 , which is 100 by default, in which case 𝑆 would be in the range [0.2, 30.3]

MB. The invocation rate is 5/s and the capacity of a node is set to 1000, which is sufficient to host any single

task, whose requested capacity is drawn from an empiric distribution with a maximum value of 800. The

edge node power consumption was set to 100 W, which is typical for a small device such as an Intel NUC;

estimating the network consumption is much more complicated because it depends not only on the

devices but also on the overall networking infrastructure: based on the results from a recent study [19],

we have experimented with different values in the range [0.05, 5] μW/b/s. Each experiment lasted 1 day

of simulated time and was repeated 1000 times; the plots show the average value across the repetitions

with a symbol and the low (0.025) and high (0.975) quantiles as error bars. All the values above are to

be considered unless specified otherwise.

In Figure 4-6 we show 𝛼 and 𝛽14 with different combinations of Δ and the 𝑆/𝐷 ratio, only with

stateful|best-fit. 𝛽 is affected significantly by both Δ and 𝑆/𝐷: when the state is heavier (𝑆/𝐷 = 100), the

13 https://github.com/ccicconetti/stateful-faas-sim (experiment 001)
14 We omit the subscript a as we plot the average traffic rate

101096925 – 6Green – HORIZON-JU-SNS-2022 71 of 158

D2.3 – The 6Green Enabling Technologies

network traffic is very high with small values of Δ (note the log scale on the y-axis) because frequent

migrations are expensive. This effect is much less prominent with 𝑆/𝐷 = 10 and 𝑆/𝐷 = 1, because of the

smaller state sizes compared to the invocation data sizes. With increasing Δ, all the curves initially decrease

and then, increase again until they converge to the same value (as the defragmentation becomes more

sporadic, the state size becomes less important). The minima of the curves depend on the specific value

of /𝐷 . The number of active nodes is independent of 𝑆/𝐷 and always increases with Δ. The choice of Δ

incurs a trade-off in the energy consumption of computation vs. network. In the following, we set the value

of Δ to 120 s, i.e., twice the average app lifetime, which appears as a reasonable trade-off between

network vs. processing consumption.

Figure 4-6: Simulations: 𝛼 and 𝛽 vs. defragmentation period 𝛥.

In Figure 4-7 we show the energy consumption with increasing 𝐸𝐵 while keeping 100 W. The energy

consumption increase with a higher per-bit-rate cost is higher with a stateless deployment, especially in the

max-balancing flavour, and is very modest with a stateful deployment. In the latter case, we can see that the

best-fit policy reduces energy consumption by about 2 compared to random, for all values of 𝐸𝐵 . In the

following, we only consider the two extremes of the 𝐸𝐵 range.

Figure 4-7: Simulations: energy consumption vs. 𝐸𝐵.

101096925 – 6Green – HORIZON-JU-SNS-2022 72 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-8: Simulations: energy consumption vs. 𝑆/𝐷, 𝐸𝐵 = 0.05 μW/b/s.

The impact of the state size, compared to the data invocation size, is exposed in Figure 4-8, with low per-bit-

rate energy cost, i.e., 𝐸𝐵 = 0.05 μW/b/s. A stateless deployment, with a min-nodes policy, is the best option

only for 𝑆/𝐷 ≤ 10 and only by a small margin compared to stateful|best-fit. On the other hand, as 𝑆/𝐷

increases significantly above 10, stateless deployment becomes significantly more energy-hungry, due to the

cost of accessing the state upon each function invocation. With 𝑆/𝐷 > 100, stateless is outperformed even

by stateful|random. The max-balancing policy follows the same trend as min-nodes and is always above the

latter, though the gap reduces slightly as 𝑆/𝐷 increases. From an energy consumption perspective, stateful

deployments are almost insensitive to the size of the applications' states.

Figure 4-9: Simulations: energy consumption vs. average application lifetime.

In Figure 4-9 we report the measurements obtained with min/max 𝐸𝐵 values for stateful policies (with

stateless, the values with maximum 𝐸𝐵 are well above the plot -axis range) when increasing the

application lifetime from 15 s to 120 s. As expected, all the curves increase with the load. Both

stateful|best-fit curves lie at the bottom and gain an increasing margin compared to all the others as

the load increases. The second-best option is stateless|min-nodes (only with minimum 𝐸𝐵), while the

stateless|max-balancing performs worst.

101096925 – 6Green – HORIZON-JU-SNS-2022 73 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-10: Simulations: energy consumption vs. node capacity.

Finally, in Figure 4-10 we show the energy consumption (only due to processing) with increasing node
capacity from 800 to 4000. All the curves decrease because with increasing 𝐶 the number of nodes required
decreases, as well, while we keep the power consumption per node 𝑃𝑁 constant. It is interesting to note that
the curves are almost overlapping in pairs. At the bottom (less energy consumed) we find stateful|best-fit
and stateless|min-nodes: in fact, they both aim at reducing the edge computing infrastructure energy
consumption. Stateless has a slight gain compared to stateful, but it is more than compensated by a lower
energy efficiency from the network traffic perspective. At the top (more energy consumed), the two
comparison systems show similar performance, which can be explained by the fact that they both try to
spread as much as possible the load among the active nodes: stateless|max-balancing does this explicitly,
stateful|random implicitly. A stateful deployment, with a best-fit allocation strategy, can be as efficient as a
stateless one despite the fragmentation issue.

4.1.2 Experimental Evaluation

We now illustrate the results obtained with a testbed of small edge nodes, related to the practical comparison

of the stateless vs. stateful serverless computing paradigms.

Figure 4-11: Testbed used for the evaluation of stateless vs. stateful serverless computing.

101096925 – 6Green – HORIZON-JU-SNS-2022 74 of 158

D2.3 – The 6Green Enabling Technologies

The testbed is hosted by CNR-IIT and is illustrated in Figure 4.11. It includes 21 hosts in total:

 1 Virtual Machine running on an Intel server in the CNR data centre, interconnected with the other

hosts via a 1 GbE LAN.

 10 NVIDIA AGX Orin 64 Gb embedded devices.

 10 Raspberry PI 5 single-board computers.

The following ancillary devices were used for the experiments:

 Cisco L2 switches, in stack mode, providing all the hosts with 1 GbE (RPi) and 10 GbE (Orin)

connectivity.Raritan PDUs providing the hosts with power and monitoring the active power of each

individual device.

The experiments have been executed with the EDGELESS15, which is a platform that allows the development

and deployment of stateful agents in the edge-cloud. A single cluster was configured including all the hosts,

managed by a single orchestrator running on the VM. The scripts to run the experiments and to analyse the

data are all available publicly, together with the artifacts of our experiments, on a GitHub repository16.

Figure 4-12: Workflows used for the experiments: (a) stateful, vs. (b) stateless.

15 https://github.com/edgeless-project/edgeless/
16 009-6green-state, 010-6green-calib, and 011-multicore

https://github.com/edgeless-project/edgeless/

101096925 – 6Green – HORIZON-JU-SNS-2022 75 of 158

D2.3 – The 6Green Enabling Technologies

In Figure 4.12 we illustrate the two workflows (applications) used for the experiments. In (a) the workflow

consists of a trigger function that generates messages with Poisson-distributed interarrival times. The

message is sent to a stateful function that performs a processing operation on its internal state. In particular,

the state consists of a vector of 32-bit floating point numbers, initialized with random values between 0 and

1, and the operation is the element-wise computation of the trigonometric sin() function. After the operation

is complete, a message is generated towards the trigger function to record message latencies. The workflow

in (b) is functionally equivalent but the state, i.e., the vector, of each application is kept in an in-memory Key

Value Store (KVS) hosted on the server VM. Therefore, the stateless function is forced to read the vector

before each operation and update it with the new values afterwards. The workflows were configured with

annotations that forced the orchestrator to assign the trigger function instances to the VM, while the

stateful/stateless function instances to the edge nodes in a random fashion.

Calibration experiments. We have run initial experiments to calibrate the system parameters, whose results

are reported in the following.

First, we have created an incremental number of stateful workflows, one every 60 seconds, deployed on the

same Orin. Each workflow had a rate of 80 Hz, with a state of size 100k (i.e., the vector had 100k elements,

corresponding to an in-memory size of 400 kbytes).

Figure 4-13: Calibration experiment with increasing stateful flows. Left: workflow latency. Right: Throughput.

101096925 – 6Green – HORIZON-JU-SNS-2022 76 of 158

D2.3 – The 6Green Enabling Technologies

In Figure 4.13 (left) we show the workflow latency over time, which increases only slightly until the node

becomes overloaded after the 10-th workflow is added. Similarly, in the right part we can see that the

throughput of the workflows is stable until the last flow, with spurious spikes only occurring whenever a new

flow is added for edge effects in post-processing the data.

Figure 4-14: Calibration experiment with increasing stateful flows. Function execution (left) vs. transfer (right) time.

In Figure 4.14 we break down the workflow latency in the two main components, which are the time needed

for the processing operation (left) and the latency introduced by the network and trigger function (right),

called function transfer time. The latter has a more stable behaviour than the former, with spikes that are

caused by the initialization of the state when a new workflow is created. When the system becomes unstable,

after the last workflow is added, the function execution time remains bounded, but the transfer time grows

indefinitely.

Figure 4-15: Calibration experiment with increasing stateful flows. Left: active power. Right: CPU usage.

Finally, in Figure 4.15 we report the active power (left) and CPU usage (right). It is interesting to note that

there is a clear positive correlation between these metrics, whose values follow the same qualitative trend.

This confirms the intuition that the active power of AGX Orin devices is a linear function of the CPU usage,

with an offset given by the idle consumption.

101096925 – 6Green – HORIZON-JU-SNS-2022 77 of 158

D2.3 – The 6Green Enabling Technologies

We now report the results from a second batch of calibration experiments. We used both Orin and RPi

devices, but always one at time for each experiment. Again, we only deployed stateful workflows with a

message rate of 80 Hz. We repeated multiple experiments, with 1 vs. 10 workflows, and with variable state

sizes from 1k to 1M elements.

Figure 4-16: Calibration experiments with various state sizes. Left: workflow latency. Right: network traffic.

In Figure 4-16 (left) we report the workflow latency. As can be seen, the latency increases with the state size,

because more sin() operations are needed. The RPi 5 device can withstand greater state sizes than the AGX

Orin, which can seem counterintuitive because the latter is more powerful. However, the latter has 8 CPU

cores, while the RPi 5 has only 4, therefore the per-CPU processing power of the RPi 5 is greater. We note

that, in EDGELESS, function instances execute in a WebAssembly run-time environment that is designed for

single-thread operation. In the right plot, we report the network traffic per node, which takes into account

the messages exchanged in the data plane, as well as the control and management of the EDGELESS node

services. The traffic is not affected by the state size, because the functions are stateful. There is a light

decrease only when the system is unstable.

Figure 4-17: Calibration experiments with various state sizes. Left: active power. Right: CPU usage.

Finally, in Figure 4-17 (left) we report the memory occupancy of the EDGELESS service running in the nodes,

in percentage of the overall memory available. As expected, the occupancy increases with the state size, but

the increase is modest compared to the baseline, because of the relatively small size of the state footprint in

101096925 – 6Green – HORIZON-JU-SNS-2022 78 of 158

D2.3 – The 6Green Enabling Technologies

memory; even with 1 M elements, each state occupies 4 MB, while the RPi 5 is equipped with 8 GB of RAM

and the AGX Orin with 64 GB, shared between CPU/GPU. The right plot shows the CPU usage, which on the

other hand increases significantly with both the state size and the number of workflows, because of the CPU-

bound nature of the application used in the experiments.

Full experiments. In the full experiments 20 devices (10 RPi + 10 Orin), with 20 and 200 workflows, state size

of 10, 1k, and 100k elements, and we compared the two patterns stateful vs. stateless. In particular, for the

stateful case we deployed precisely the given number of workflows (20 or 200), each with a message rate of

100 Hz, where function instances are assigned at random to nodes by the orchestrator. On the other hand,

to mimic a typical serverless computing deployment, for the stateless case we forced the orchestrator to

deploy exactly one workflow on each node, then we adjusted the message rate to emulate the same load as

with a stateful workflow.

Figure 4-18: Full experiments, stateful vs. stateless. Left: latency. Right: loss ratio.

In Figure 4-18 (left) we show the workflow latency. The results are grouped based on the number of

workflows, 20 or 200, which means an average of 1 or 10 function instances per node; remember that the

assignment of function instances to nodes is done by an orchestration function at random, there it can

happen that some node is loaded more than others. On the x-axis, we indicate labels that specify the

deployment mode, i.e., stateful (L = local state) or stateless (R = remote state), and the state size, from 10

elements to 100k elements. The same format is adopted throughout the analysis. The plot leads us to several

observations, which are confirmed by results shown later:

 Stateful deployment exhibits a significantly lower latency, not only with a large state (e.g., 100k), but

also with a very small state of 10 elements. This is due to the cost of accessing the remote state, even

if the latter is stored in a service in the same LAN as the edge nodes, which is an optimistic scenario.

A more realistic would involve the state located in some cloud-hosted storage service, which would

increase the remote access penalty in terms of latency.

 With a stateful deployment, the latency with 200 workflows is not significantly higher than that with

20 workflows. Rather, with 10 and 1k elements, which have a modest processing cost, the latency is

slightly lower on average, and with comparable spread. Only with 100k elements the tail latency

increases significantly (note the plot has a log-scale in the y-axis), but the average is still similar. This

counterintuitive behaviour suggests that the nodes are not overloaded.

 However, with a stateless deployment, the latency with 200 workflows is significantly higher than

that with 20 workflows, by at least an order of magnitude. Since this cannot be due to the processing

101096925 – 6Green – HORIZON-JU-SNS-2022 79 of 158

D2.3 – The 6Green Enabling Technologies

in function instances, which is the same as in the stateful case, we believe the effect is due to the

contention on the state retrieve/update operations. In fact, when the state is greatest, i.e., with 100k

elements, the system becomes unstable, with latencies growing arbitrarily. Figure 4-18 (right)

confirms this by reporting the loss ratio, i.e., the ratio between the messages received back by the

trigger function (see Figure 4-12) and those emitted by it: stateless with 200 workflows and 100k

elements is the only case with a non-negligible loss ratio.

Figure 4-19: Full experiments, stateful vs. stateless. Memory occupancy of Orin (left) and RPi (right) devices.

In Figure 4-19 we report the memory occupancy, grouped by node type: AGX Orin devices on the left, RPi 5

devices on the right. Since the occupancy is expressed in percentage, the baselines for the two devices are

different (AGX Orin ones have 64 GB of RAM, RPi 5 devices only 8 GB), but the qualitative behaviour is the

same. With a stateful deployment the memory occupancy increases with the state size, which is fully

expected because the state is kept locally at each function instance; on the other hand, a remote deployment

is independent from the size of the state, which is stored externally. In our experiments, the state has a

modest size compared to the availability, therefore the different memory occupancy difference is barely

noticeable, in the order of 0.1%-0.2%. However the memory requirement of a stateful deployment may

become a limiting factor when the state is either very large or the memory availability on edge nodes is

severely constrained.

Figure 4-20: Full experiments, stateful vs. stateless. CPU usage of Orin (left) and RPi (right) devices.

101096925 – 6Green – HORIZON-JU-SNS-2022 80 of 158

D2.3 – The 6Green Enabling Technologies

In Figure 4-20 we report the CPU usage. The results confirm our observations about the latency. In fact, we

see that, in general, the CPU is always underloaded. In relative terms, there is a significant increase from 20

to 200 workflows, due to the extra work; also, the CPU usage increases with the state size, because more

sin() operations are needed. With a stateless deployment and largest state size, i.e., R-100k in the plots, the

CPU usage is the same for 20 and 200 workflows only because the system is unstable: the service rate is not

CPU-bound but rather state-access-bound.

Figure 4-21: Full experiments, stateful vs. stateless. Network traffic of Orin (left) and RPi (right) devices.

In Figure 4-21 we report the average network traffic per node during the experiment. The results are

comparable between AGX Orin a RPi 5 devices because this metric only depends on the amount of data

required by the workflow, including state read/update operations with a stateless deployment, and for

control/management plane signalling. The network traffic is minimum with a stateful deployment, where it

depends only on the number of workflows but not the state size. Instead, it grows significantly with a

stateless deployment because of the state-related network operations.

Figure 4-22: Full experiments, stateful vs. stateless. Active power of Orin (left) and RPi (right) devices.

In Figure 4-22 we report the active power. A general observation is that AGX Orin devices have much more

stable power readings, while the RPi 5 devices exhibit erratic measurements. We speculate that this could

be due to DVFS, and other power consumption mechanisms, performed by the RPi 5. Note that both

categories of edge nodes have not been tuned for reduced power consumption and are using out-of-the-box

101096925 – 6Green – HORIZON-JU-SNS-2022 81 of 158

D2.3 – The 6Green Enabling Technologies

configurations. Another general observation is that AGX Orin devices have a much higher baseline power

consumption than RPi 5 devices, 8.5 W vs. 2.5 W, as confirmed by empirical evidence found in web forums.

The results do not exhibit strong correlations of the active power with the deployment model, state size, or

number of workflows, except for stateless deployment with 200 workflows on RPi 5 devices (labels R-10, R-

1k, and R-100k in the right plot).

Figure 4-23: Full experiments, stateful vs. stateless. Active power vs. CPU usage with 20 (left) and 200 (right)
workflows.

To delve deeper on this matter, we have broken down the active power results per node, instead of

aggregating the data samples in box plots as reported in Figure 4-22. Figure 4-23 shows the average active

power of each node for a corresponding value of average CPU usage, using different colours for the

deployment model and state size, as well as grouping the results for 20 (left) and 200 (right) workflows. With

20 workflows (left plot) we can see about half of the points laying in a straight line, which suggests

proportionality between the active power and the CPU usage: those points correspond to RPi 5 devices, as

can be inferred by active power being lower than 5 W. On the other hand, AGX Orin devices (above 8.5 W)

are basically independent from the experiment characteristics. With 200 workflows (right plot), the AGX Orin

devices remain independent, while the correlation with RPi 5 devices becomes less evident. Comparing these

results with the previous ones suggests exercising caution about the use of CPU usage as a direct indicator of

power consumption with AGX Orin and RPi 5 devices, irrespective of the deployment model and overall load.

4.1.3 Conclusions

We have performed a comparative analysis of two deployment models for serverless workflows: stateless,

which is the state-of-the-art approach where the application’s state is stored at an external service and must

be retrieved/updated when needed, and stateful, where a function instance is deployed for every application

and, thus, can keep its state local. For the analysis, we have used simulation, based on a custom mathematical

model, and testbed evaluation with 20 mixed edge nodes, i.e., Raspberry Pi 5 and AGX Orin devices. The

simulation has led us to identify some key performance trade-offs, especially in terms of power consumption,

depending on the state size and network characteristics. In brief, using a stateless deployment model is never

the best choice, unless the state is very small or the external storage service can be accessed with negligible

performance penalty. The testbed evaluation made this conclusion even stronger. In fact, despite the

optimistic environment for what concerns the access to the storage service (an in-memory KVS in the same

LAN as the edge nodes), a stateful deployment exhibited less latency and no noticeable degradation in terms

of power consumption. We note that there might be cases when a stateful deployment is not possible for

101096925 – 6Green – HORIZON-JU-SNS-2022 82 of 158

D2.3 – The 6Green Enabling Technologies

practical reasons, including insufficient memory availability on the edge nodes to keep the state,

administrative requirements on the application state location (e.g., to comply with GDPR rules), or backward

compatibility with a legacy codebase relying on a stateless deployment model. Finally, we have observed

some correlation between the CPU usage reported by the edge nodes and their power consumption, as

measured by a monitored PDU, but only on come conditions. Therefore, it is not possible to use the CPU

usage as a universal indirect estimator of the power consumption, but more research is needed to find the

right combination of features for this purpose.

4.2 Adaptive RAN Power Management in Serverless Environments

Effective energy optimisation in cloud-native and serverless Radio Access Networks (RANs) requires a

detailed understanding of how individual system parameters influence total power consumption. Key

determinants include the power consumed per radio port on the RRU, the configured MIMO level, the utilised

bandwidth, the adopted TDD split ratio, slicing configuration, OSS user profile, user-generated traffic

patterns, traffic duration, and the associated application behaviour. These factors collectively define the

energy profile of the deployed RAN and are critical for the design of intelligent, adaptive power-management

mechanisms. To assess these dependencies, the project employed the 5G/6G testbed infrastructure

described in section 5.4.1. A comprehensive measurement campaign was carried out to quantify system-

level behaviour, validate theoretical assumptions, and identify optimisation opportunities relevant for

serverless and cloud-native deployments.

4.2.1 Energy Use Patterns on the 5G HW

The first phase of the evaluation investigated the influence of RAN component states and operational

configurations on measured power consumption. Figure 4-24 provides an overview of the results,

distinguishing between the RRH consumption (dark blue line) and the consumption attributable to the two

power supplies of the IaaS environment (yellow and green lines).

Figure 4-24: Energy use patterns – 5G HW.

101096925 – 6Green – HORIZON-JU-SNS-2022 83 of 158

D2.3 – The 6Green Enabling Technologies

When the BBU was not active (Step 0), the RRU exhibited a baseline consumption of 68 W under the tested

configuration (band n77, 100 MHz bandwidth, QAM 256 DL/UL, 27 dBm per port). Deployment of the 5G Core

onto the IaaS platform (Step 1) affected only server-side consumption; RRU power remained unchanged.

Activating the BBU (Step 2) with a UE attached in idle mode increased RRU consumption to 100 W under a 2×2

MIMO configuration, and subsequently to 105 W when the MIMO configuration was changed to 4×4 (Step 3).

Adjusting the TDD profile (Step 4 & 5) from a symmetric configuration to a DL-optimised configuration

resulted in an increase to 108 W. During active user-traffic (Step 6) generation (60 seconds of TCP traffic

followed by 60 seconds of idle time), consumption peaked at 130 W. The alternation between high (130 W)

and idle (108 W) power states is clearly reflected in the measurement traces.

Figure 4-25: Dependences between user behaviour and application design on 5GS power usage.

Figure 4-25 further demonstrates the relationship between user behaviour, application-level design choices,

and RRH energy usage. Short, intensive download phases—particularly with a high number of parallel TCP

sessions—drive significantly higher consumption than idle periods. Upload traffic, in contrast, results in only

a minor increase relative to idle consumption, illustrating that uplink processing is notably less energy

demanding. Longer download durations proportionally extend the high-consumption plateau, while reducing

the number of TCP sessions significantly lowers RRU load (less user load can be generated). These insights

underscore the importance of application design and traffic pattern predictability in the context of energy-

efficient mobile-network operation.

4.2.2 Energy Use Patterns on the 5G SW

To complement the hardware-level analysis, the Scaphandre measurement tool was used to evaluate power

consumption at the software-component level, including virtualised BBU functions, the 5G Core, and traffic-

generation applications (iPerf). The same test sequence used for hardware evaluation was applied to

maintain methodological consistency.

As illustrated in Figure 4-26 software-component consumption scales directly with traffic intensity and the

associated computational load. More complex MIMO configurations led to higher BBU consumption, while

application-level tools such as iPerf exhibited consumption patterns that closely correlate with BBU

workload. These results confirm the strong coupling between RAN functions and application traffic

characteristics in cloud-native 5G/6G deployments.

101096925 – 6Green – HORIZON-JU-SNS-2022 84 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-26: Energy Use Patterns – more complex MIMO configuration causes more power consumption (left, middle),
5G BBU component’s power consumption correlates to application power consumption.

4.2.3 Advanced Experimentation

Building upon the initial energy-consumption characterisation, a structured set of optimisation mechanisms

was experimentally validated. These mechanisms were utilised to manage RAN power usage in response to

changing operational conditions, with relevance to the 6Green use case focusing on maintaining critical

communication capabilities during energy-constraint scenarios.

The following mechanisms were evaluated: gradual cell shutdown, radio port output-power optimisation,

cell bandwidth adaptation and MIMO-level adaptation. Each mechanism provides different saving potentials

and implications for end-to-end network performance, which were analysed in detail.

Gradual Cell Shutdown

Gradual cell shutdown offers substantial energy savings by transitioning RRUs into standby mode (through

CPRI link deactivation) or by completely powering off individual RRU units. This mechanism also reduces the

corresponding BBU processing load for deactivated cells, thereby achieving significant system-wide energy

reduction. It is particularly suited for low-traffic periods or scenarios where maintaining only minimal

coverage is acceptable.

(B)5G Testbed Configuration:

- Baseline: BBU with 2 × RRU (dual-cell).

- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4×4, QAM256 DL/UL, TX Power: 26

dBm/port.

Test procedure:

- Cell shutdown via CPRI deactivation and RRU power-off.

101096925 – 6Green – HORIZON-JU-SNS-2022 85 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-27: Energy Savings by Applying Gradual Cell Deactivation

In our test configuration (BBU with two RRUs operating in band n77 at 3800 MHz with 100 MHz bandwidth,

4×4 MIMO, and 26 dBm per port), deactivating one RRU reduced hardware consumption by up to 50%,

decreased BBU processing by up to 33%, and reduced 5G Core processing by up to 42%. When two cells each

served one UE, throughput reached approximately 850 Mbps per UE. When a single active cell served two

UEs, throughput decreased to roughly 643 Mbps, representing an expected reduction given the operational

constraints.

Radio Port Power Optimisation

Transmission-power optimisation revealed that maximum output power does not necessarily correspond to

maximum throughput achieved by served UEs. Across the tested RRU port power levels (33, 31, 29, 27, 25,

and 23 dBm), the highest throughput—950 Mbps—occurred at 27 dBm. This represents up to 121%

improvement compared with the maximum-power configuration (33 dBm), which achieved only 430 Mbps

due to increased signal distortion (reference UE was too close to the cell). Lowering the output power to 23

dBm produced 580 Mbps, offering reduced coverage but still acceptable performance.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 × RRU.

- Cell configuration: n77, 3800 MHz, BW: 100 MHz, MIMO: 4×4, QAM256 DL/UL.

Test procedure:

- Reduce TX power from 33, 31, 29, 27, 25 to 23 dBm,

101096925 – 6Green – HORIZON-JU-SNS-2022 86 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-28: Radio Port Power Optimisation with Corresponding Throughput Gains

The optimisation resulted in up to 21% reduction in RRU hardware power consumption and up to 48%

reduction in 5G Core processing due to lower achievable UE throughput. BBU consumption remained in the

same range, as its base processing load is not influenced by the RRU transmit-power adjustments. This

experiment illustrates a key finding: in the case when UEs are close to the cell tower, optimal operational

efficiency is achieved through moderate rather than maximum transmission power.

Radio Bandwidth Optimisation

Bandwidth adaptation on the cell proved to be the most effective mechanism for reducing software-side

energy consumption. Reducing bandwidth from 100 MHz to 20 MHz decreases the total number of resource

blocks from 273 to 106 (a 61% reduction), resulting in proportionally lower BBU processing requirements.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 × RRU.

- Cell configuration: n77, 3800 MHz, MIMO: 4×4, QAM256 DL/UL, TX Power: 25 dBm/port.

Test Procedure

- Reduce cell Bandwidth from 100, 50 to 20 MHz.

101096925 – 6Green – HORIZON-JU-SNS-2022 87 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-29: Energy Reduction Enabled by Bandwidth Downscaling

The tests showed a minor reduction in RRU hardware consumption (approximately 4%) but a substantial

decrease in BBU and 5G Core consumption (up to 69% and 62% respectively). The throughput impact was

proportional to the allocated bandwidth: 1 Gbps at 100 MHz, approximately 500 Mbps at 50 MHz, and 230

Mbps at 20 MHz. The 20 MHz configuration remains adequate for essential services such as emergency voice,

messaging, and alert dissemination, making bandwidth optimisation particularly relevant for crisis-response

scenarios.

MIMO Level Optimisation

Adjusting the MIMO configuration offers a balanced optimisation option that delivers both reduced energy

consumption and improved radio link robustness in degraded radio environments. Lowering the MIMO level

reduces the number of active RF chains at the RRU and significantly decreases spatial-processing

requirements at the BBU.

(B)5G Testbed Configuration:

- Baseline: BBU with 1 × RRU.

- Band: n77, 3800 MHz, BW: 100 MHz, QAM256 DL/UL, TX: 25 dBm/port.

Test Procedure

- Reduce MIMO from 4×4, 2×2 to SISO level.

101096925 – 6Green – HORIZON-JU-SNS-2022 88 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-30: Power Efficiency Improvements via MIMO Downscaling

Measured savings included up to 16% reduction in RRU hardware consumption, up to 43% reduction in BBU

consumption, and up to 55% reduction in 5G Core power consumption. Throughput decreased from

approximately 1 Gbps (4×4 MIMO) to 670 Mbps (2×2 MIMO) and 390 Mbps (SISO). Importantly, the SISO

configuration demonstrated the highest link stability, which is crucial under non-line-of-sight and

infrastructure-degraded conditions.

4.2.4 Main findings

The validated mechanisms support context-aware optimisation strategies that can be selectively applied

depending on the operational scenario. Gradual cell shutdown enables up to 50% energy savings on the RRU

side (base station with two cells) with moderate QoE impact and is well suited for low-density base stations

or emergency-only operation. Radio transmission-power optimisation delivers up to 25% savings with

negligible—and under favourable conditions, such as UEs located near the cell site—even positive QoE

impact. Radio-bandwidth reduction provides up to 70% savings and represents the most effective software-

based mechanism, though it introduces significant capacity constraints. MIMO-level reduction yields up to

55% savings and enhances link robustness in challenging radio environments.

The following key conclusions emerged. First, the identified “throughput efficiency paradox” demonstrates

that moderate transmit-power configurations can outperform high-power operation in both throughput and

energy efficiency. Second, combining multiple mechanisms produces cumulative benefits, enabling up to 70%

101096925 – 6Green – HORIZON-JU-SNS-2022 89 of 158

D2.3 – The 6Green Enabling Technologies

total energy reduction in extreme energy-constrained scenarios. Third, the observed deterministic power-

consumption patterns provide a strong foundation for automated AI/ML-based control.

The comprehensive measurement and validation activities conducted in this task confirm that the

investigated mechanisms can jointly deliver up to 70% system-wide energy savings, making them suitable for

highly energy-constrained contexts such as disaster-response operations. The work provides quantified

performance impacts, identifies important cross-layer efficiency interactions, and establishes a reproducible

methodological basis for AI/ML-enabled autonomous power management. As next steps, we will integrate

these findings into higher-level management frameworks, validate the mechanisms under realistic crisis

conditions as part of the use-case activities, and align them with renewable-energy systems and advanced

battery-management solutions.

The complexity and multidimensional nature of RAN energy optimisation necessitate the adoption of AI-

driven approaches. Prediction models can anticipate traffic behaviour and proactively adjust RAN

configurations. Multi-objective reinforcement-learning methods can balance competing parameters such as

coverage, QoE, and energy consumption. Context-recognition models enable the system to automatically

identify operational states, while anomaly-detection models can reveal irregular consumption patterns or

early signs of hardware degradation.

4.3 Energy-Aware Network Slice Management in O-RAN

This modular approach to service delivery achieved by network slicing is complemented by the disaggregation of

the Radio Access Networks (RAN) architecture as e.g., suggested by the Open RAN (O-RAN) Alliance17 in order to

enable RAN openness and interoperability. This architecture divides the RAN into three key components: the

Central Unit (CU), the Distributed Unit (DU), and the Radio Unit (RU), which can be deployed on open hardware

and cloud nodes as VNFs. Network slicing in O-RAN, is intricately linked to the placement of RAN-specific Network

Functions (NFs) in the RU, DU, and CU. By deploying DUs closer to RUs at the network edge, operators can reduce

latency and improve the overall performance of RAN slices. However, in this regard, network slicing in O-RAN is

mapped into a complex RU, DU, and CU resource allocation problem. Challenges arise in the dynamic allocation

of these resources to support varying slice requirements and changing slice request patterns, while minimizing

power consumption and reconfiguration costs associated with VNF migration towards improving slice admittance

ratio [20]. Generally, VNF allocation is performed either proactively but assuming perfect forecasts of future slice

admission requests for a quite long time horizon (e.g., [21]), or reactively upon arrival of the slice requests with

future knowledge on traffic arrivals in an expected sense (e.g., [22], [23]). The above challenges underscore the

need for innovative solutions to optimize resource utilization, minimize network delay and power consumption

but also importantly enhance the robustness of O-RAN slicing deployments under uncertainties on future

knowledge. This section presents our work that contributes towards this direction by solving the problem of

optimal joint slice admission control and VNFs placement in the O-RAN modules with an iterative Model Predictive

Control (MPC) strategy that allows considering updated forecasts of future slice arrivals. Also, it aims to shed light

on the issue of minimizing the reconfiguration costs associated with optimizing multiple slice deployments, which

are related to slice downtime (decreased slice availability), offering insights into strategies to streamline this

process and ensure maximization of revenue during slice admission. We appropriately handle reconfiguration

along the MPC iterations to improve slice admittance in an energy efficient way. Additionally, the proposed setting

considers vendors' Quality of Service (QoS) issues such as end-to-end delays, but also, an overall green operation

through accounting for power consumption costs.

17 https://www.o-ran.org

https://www.o-ran.org/

101096925 – 6Green – HORIZON-JU-SNS-2022 90 of 158

D2.3 – The 6Green Enabling Technologies

4.3.1 System Architecture and Modeling

Figure 4-31 depicts the deployed O-RAN based architecture. In detail, micro-datacenters, namely Edge Clouds

(ECs), are deployed at the network edge and serve as computing resources, in the proximity of the radio unit

enabling low-latency processing and reducing backhaul traffic ℰdenote the set of ECs of the topology. Each

EC, e ∈ ℰ, hosts a DU responsible for processing and managing network functions associated with specific

network slices. The ECs are connected with the cell-cite, where an RU is deployed, via fronthaul (FH)

connections, while midhaul (MH) links connect each EC with the Regional Cloud (RC) datacenter, denoted by

ℛ, where the CU is deployed. The RC serves as a centralized computing resource for higher-level processing

and coordination across multiple ECs. The FH links facilitate low-latency communication between the RU and

the DUs, while MH links provide high-bandwidth connectivity between DUs and CU. For every e ∈ ℰ the total

computing capacity, in CPU cores is defined as CEe, while the corresponding parameter for the regional cloud

is denoted by CR . Furthermore, transmission delay of the FH and the MH links is defined as δr,e and

δe,ℛ,  ∀e ∈ ℰ, where 𝑟 is the RU. Moreover, CBF,e, CBM,e stand for the bandwidth of the FH and MH links

associated with the EC, e ∈ ℰ, respectively.

4.3.2 Slice Request Model

In the proposed O-RAN-based system modeling, we consider a set F consisting of available VNFs, denoted by

vf ∈ F that can be deployed to compose various network slices. It is important to note that certain VNFs,

specifically the VNFs with IDs v0, v1, remain consistent across all network slice requests. In precise, VNFs

v0, v1 are the initial VNFs used in every request s. When a network slice request s arrives, it is considered as

an ordered set of elements of F, Fs = {v0
s , v1

s, … , vf
s, … , vns

s } ⊆ F, where v0
s = v0 ∈ F, v1

s = v1 ∈ F. Notably,

each network slice request s is structured following the Service Function Chain (SFC) deployment model,

where a specific execution sequence is defined [1]. This sequence dictates the order in which the VNFs are

processed within the network slice.

Figure 4-31: Proposed O-RAN-based Architecture.

Additionally, the compute and network related resource requirements are defined per slice s. For a VNF vf ∈

Fs, there exist specific demands regarding CPU cores for the VNF deployment cs,f and the bandwidth for the

link (f − 1, f) denoted as bs,f. Furthermore, each request s arrives at a specific time ts and has a holding time

hts, indicating the duration for which the slice remains active once requested. Moreover, an end-to-end delay

requirement Dmax,s and a priority value prs is defined for each slice request, reflecting its tolerance level for

101096925 – 6Green – HORIZON-JU-SNS-2022 91 of 158

D2.3 – The 6Green Enabling Technologies

delay and importance, respectively. All notations used are summarized in Table 4. Let us also specify the

following variables that play an important role in the problem formulation:

 𝑥

Furthermore, we consider that each EC hosts a single distributed computing unit. The VNF with index 0 is

placed on the RU, and the remaining VNFs are placed either on an EC or the RC with the constraint that if a

VNF is placed on an EC all its preceding VNFs in the path should be placed on ECs.

101096925 – 6Green – HORIZON-JU-SNS-2022 92 of 158

D2.3 – The 6Green Enabling Technologies

Table 4: Selective Notation and Description.

101096925 – 6Green – HORIZON-JU-SNS-2022 93 of 158

D2.3 – The 6Green Enabling Technologies

4.3.3 Problem Formulation

System Dynamics and Constraints

The CPU utilization of each EC evolves as follows:

as obtained after the calculations provided analytically in [24]. In similar lines, we compute the evolution

equation of the bandwidth utilization of the FH links as:

Next, we shorty describe and provide the remaining system constraints:

First, the aggregate of the computing resources to bind in any EC or the RC has to be lower than the total

possible computing capacity of the corresponding cloud, which is expressed as follows:

A slice uses a link between the RU and an EC, if its second VNF (i.e., with index 1) is placed in this EC. The

bandwidth constraints for the FH and MH links are expressed for every time t as follows.

For every admitted slice, its first VNF (i.e., with index 0) is placed in the RU:

In addition, a VNF f, of an admitted slice s, can be allocated either to a single EC or the RC at every time i.e.,

Moreover, for an admitted slice, the VNF 1 should be placed in an EC, which is guaranteed if it cannot be

placed in the RC, i.e.,

Under the assumptions of service chaining and colocation, if for an admitted slice s, a VNF f is placed in an

EC, the VNFs preceding f in the service chain should be also placed in the same EC. Similarly, if a VNF is placed

in the RC, its successive VNFs in the service chain of the slice should be also placed in the RC.

101096925 – 6Green – HORIZON-JU-SNS-2022 94 of 158

D2.3 – The 6Green Enabling Technologies

Therefore,

The total delay imposed by FH and MH links at any time is bounded as follows:

A FH link is considered utilized only if one or more slices have placed their VNFs with index 1 in its

corresponding EC, i.e.:

A MH link is considered utilized if for any pair of two successive VNFs of any slice, one is placed in the EC and

the other on the RC, i.e.,

Finally, a slice that gets admitted at time should be considered admitted for its entire control lifecycle, i.e.,

Objective Function

To define the objective function we consider three factors, namely: (i) the revenue obtained from slice

acceptance, (ii) the cost deriving from reallocating already accepted slices, and (iii) the power consumption

of the ECs and the network links that are utilized for the slice deployment. The revenue of a slice acceptance

at time t is

For the reallocation cost both VNFs moving from an EC to the RC or vice versa and those VNFs that move

from an EC to another are considered. The instantaneous reallocation cost of VNFs from an EC to the RC or

vice versa is expressed as:

while the reallocation cost from an EC to a different EC is expressed by

Regarding the power consumption cost, we follow the modelling of a power efficient VNF placement

approach from the literature [25]. In case of ECs, it is given by:

101096925 – 6Green – HORIZON-JU-SNS-2022 95 of 158

D2.3 – The 6Green Enabling Technologies

In case of links that connect the RU with an EC, it is formulated as:

Finally, in case of links that connect an EC with the RC, it can be written as:

Optimization Problem – Problem 1:

subject to:

all system dynamics and constraints expressed above

and

where Ce(l), Be(l), ∀e ∈ ℰ are given. The optimization problem is mixed integer quadratically constrained

problem with quadratic objective. Next, we apply Watters' linearization [26] on the quadratic terms in both

the objective function and the constraints and the problem takes a MILP form.

4.3.4 Proposed Solution via Model Predictive Control (MPC)

To perform dynamic optimal slice admission and resource allocation on admitted slices, we solve the Problem 1

in a Model Predictive Control (MPC) fashion as illustrated in Figure 4-32. The control period starts at t0 where no

slices have arrived yet and thus no computing and bandwidth resources have been yet allocated. Problem 1 is

then solved with initial time t0 and a horizon of H time intervals in the future each of duration Δτ. The number of

slices and their arrival times within the future time horizon H is unknown and forecasts are used. In this work,

forecasts are considered given by an external forecasting tool. The decisions about slice admittance and resource

allocation are obtained for all time intervals within the horizon H. However, we apply only the decisions for time

t0 and disregard all other decisions for future times. By the time we apply the decisions we also observe which

slices actually arrived. For slices that were forecasted to arrive but did not, we cancel any related resource

allocation decision. For slices that arrived without being expected, we also do not allocate resources as otherwise

infeasibilities and high costs may emerge. At the next decision time, i.e., t0 + Δ, the process is repeated. In

particular, we observe the updated states regarding the computing resources of the ECs and the RC as well as the

bandwidth of the links. Also, updated forecasts of the number and arrival times of new slices are obtained for a

time horizon equal again to H time intervals in the future each of duration Δτ. However, slices that have been

already accepted at time t0 or earlier, should continue providing service at time l = t0 + Δ, if their updated

holding time is positive. This requirement cannot be directly handled by Problem 1 and necessitates the additional

constraint with RFixed(l) the set including all slices satisfying s ∈ R̃(l − Δτ) and hts ≥

Δτ and Xs(l − Δτ) = 1. In addition, the Problem 1 should be adapted in order to account for the potential re-

allocation costs of slices between times two consecutive decision times. To do so we introduce new binary

parameters xs,f
e,Fixed, ys,f

Fixed , for all slices s ∈ RFixed(l) with values set as xs,f
e,Fixed = xs,f

e (l − Δτ) , ys,f
Fixed =

ys,f(l − Δτ). Based on the above, we formulate Problem 2 that is an adapted version of Problem 1 for being

integrated in an MPC framework. Algorithm 1 presents a pseudo-code of the solution process.

101096925 – 6Green – HORIZON-JU-SNS-2022 96 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-32: MPC Iterations.

Optimization Problem to be integrated in an MPC Framework – Problem 2:

subject to:

all network dynamics and constraints above

where:

101096925 – 6Green – HORIZON-JU-SNS-2022 97 of 158

D2.3 – The 6Green Enabling Technologies

4.3.5 Evaluation Results (MPC)

Evaluation Setting:

This section presents the assessment of the proposed MPC-based solution approach for the problem 1. For

the implementation of the simulation environment, version 3.10 of Python programming language is used.

We follow an object-oriented programming approach, defining one class for the slice request model and one

class for implementing the solution methods, i.e., the proposed mpc-based method and the alternative

solutions. The substrate network parameters are involved in the solution class. To solve the optimization

problem we use Gurobi solver, specifically, the gurobipy Python package. The parameter values are given in

Table 5 and 4. The substrate network consists of three ECs and one RC. We consider two types of slices,

URLLC and eMBB. VNF requirements adhere to a typical paradigm commonly for cloud service providers.

These requirements manifest in three distinct flavors, denoted as small, medium, and large. Each flavor

corresponds to varying levels of resource demands, particularly in terms of CPU cores for our modeling.

Specifically, the CPU demand per flavor is specified as 2 cores for small, 4 for medium, and 8 for large. In the

101096925 – 6Green – HORIZON-JU-SNS-2022 98 of 158

D2.3 – The 6Green Enabling Technologies

context of the simulation process, a flavor is chosen equiprobably for each VNF of every slice. We consider

that the number of slice requests is equal to 15 over a time horizon of 12 time units. In order to perform a

fair evaluation between the distinct approaches, we assume that the holding time of every deployed slice

could not exceed the 12 timesteps setup which reflect to 24 hours of deployment time.

Table 5: Network parameters.

Table 6: Slice parameters.

We generate forecasts for the time arrival of requests using the following forecasting method. Initially, the

arrival time of requests is sampled from a discrete uniform distribution over the optimization horizon, H. At

each time slot of the control period, we solve the Problem 2 and obtain the decision variables. We consider

that our forecasting method generates forecasts that are inaccurate with probability 10%. In this context, we

define two forecasting scenarios, namely, (i) Less accurate forecasting scenario: In this scenario, the arrival

time of not yet realized slice requests is resampled from a discrete uniform distribution over the horizon.

(ii)Highly accurate forecasting scenario: Under the highly accurate forecasting scenario, 20% of the expected

requests to arrive resample their time arrival. All the simulations are executed in an Ubuntu 20.04 virtual

machine with 8 vcpus and 8GB of RAM of an Intel(R) Xeon(R) CPU@2.10GHz server.

Evaluation Metrics:

The evaluation focuses on comparing the performance of three distinct methods: the proposed MPC solution,

an MPC variant that avoids VNF reallocation (MPC-NR), and a one-shot optimization approach that decides

the admission of slice requests at the first time slot for the entire horizon (One Shot). These methods were

tested under the two different settings of slice request forecasting that were discussed above, in order to

101096925 – 6Green – HORIZON-JU-SNS-2022 99 of 158

D2.3 – The 6Green Enabling Technologies

assess their robustness and adaptability to dynamic changing of slice request demands. The evaluation

metrics for the performance assessment are:

Acceptance Ratio: The acceptance ratio measures the percentage of admitted slices by a certain time step,

determined by the active slice subset, which includes ongoing requests yet to expire. It reflects the system's

efficacy in handling incoming slice demands amidst existing deployment commitments.

Objective Value: This metric represents the optimization objective value achieved by each method based on

the actual realization of slice requests, offering insights into their efficiency in resource allocation and

utilization during the slice requests admission.

Power Efficiency: This is defined as the ratio of revenue generated by the admitted slices over the total

power consumption of the compute and network counterparts of the substrate network. The inverse of

power efficiency signifies the system's effectiveness in conserving energy, with lower values denoting

higher power efficiency.

Discussion on the Results:

Figure 4-33 and Figure 4-34 present the cumulative average of the above evaluation metrics computed over

a 12-time step horizon for the two cases of the forecasting scenarios, aiming to provide a comprehensive

overview of the performance trends observed across the simulation. In scenarios with favorable forecast

conditions, marginal differences are observed between the solution methods. However, upon closer

examination, MPC demonstrates its adaptability over the prediction horizon, particularly in achieving higher

acceptance ratios, as shown in Figure 4-33a. At the same time, it maintains optimal values for other key

metrics compared to MPC-NR and One Shot solutions (Figure 4-33b,c), showcasing its ability to adjust

resource allocation decisions regarding VNF placement, while achieving to maintain low consumption power

of the compute and network counterparts.

The efficacy of the MPC approach becomes more evident in less accurate forecast scenarios. The

evaluation results regarding this scenario are shown in Figure 4-34. In more detail, despite inherent

uncertainties, MPC consistently outperforms One Shot optimization method, highlighting its robustness

and resilience to forecast inaccuracies. Moreover, compared to the MPC solution that totally eliminates

the reallocation of VNFs, namely the MPC-NR, the proposed MPC approach maintains a substantial

performance advantage across all evaluated metrics. More precisely, the optimal resource utilization is

highlighted in Figure 4-34a, where the cumulative average of acceptance ratio is much higher than the

other approaches from very early during the evaluation period and maintained for the whole horizon, as

reflected in Figure 4-34b. It is worth mentioning, that despite the higher acceptance ratio, which entails to

increased resource demand, the proposed MPC approach still outperforms the MPC-NR and One Shot

methods in terms of power efficiency (Figure 4-34c).

The observed performance disparities underscore the significance of proactive and adaptive resource

allocation strategies in dynamic network environments. While traditional optimization methods may suffice

under ideal conditions, the inherent uncertainty of real-world scenarios necessitates more sophisticated

approaches. The MPC ability to leverage forecast information to anticipate demand fluctuations and

proactively optimize resource allocation decisions is a key determinant of its efficacy on slice admission in O-

RAN-based architectures. Furthermore, the performance advantage of the MPC-based approach over MPC-

NR reveals the importance of considering reallocation in dynamic resource allocation strategies. By factoring

in these costs, the MPC framework effectively manages the trade-offs between resource usage optimization

and the operational overhead associated with reallocating and migrating VNFs. This ensures optimal resource

utilization while ensuring higher slice availability with minimal management complexities from the

infrastructure provider's perspective.

101096925 – 6Green – HORIZON-JU-SNS-2022 100 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-33: Comparative evaluation results under highly accurate forecasting scenarios.

Figure 4-34: Comparative evaluation results under less accurate forecasting scenarios.

In future work, we are going to try adopting the abovementioned formulation in core network and serverless

scenarios. Especially, for serverless computing paradigm, we will try to develop a two-level virtualization

mechanism that provides a virtual network to an application (referred to as the related slice) and manages

the serverless application deployment within the virtual network. By integrating the abovementioned

forecasting mechanism with a workload estimator related to the application, we can work on creating a

scaling approach for VNF replicas and virtual network resources.

4.3.6 Proposed Solution using Reinforcement Learning (RL)

In this section, we consider a simpler version of the optimization problem for joint admission control and

resource allocation of network slices in the proposed O-RAN architecture, where the reconfiguration of the

already admitted slices is being deactivated, by forbidding the reallocation of deployed VNFs.

A Markov Decision Process (MDP) is a typical framework to describe decision-making problems in a stochastic

environment. An MDP consists of the set of states ,𝑆, the set of actions 𝐴, a state transition function 𝑃,

which indicates the probability 𝑃(𝑠′  ∣  𝑠,  𝑎) of obtaining the state 𝑠′ when taking action 𝑎 from the state

𝑠 , the reward function 𝑟 :  𝑆  × 𝐴  → R and the discount factor 𝛾. Specifically, the policy 𝜋 :  𝑆  × 𝐴  → [0,1]

indicates the probability of choosing the action 𝑎  ∈ 𝐴 from state 𝑠  ∈ 𝑆. The agent’s objective is to learn an

optimal policy 𝜋⋅, which maximizes the expected return 𝐸[∑{𝑘 = 0

∞
𝛾𝑘𝑟𝑘], where 𝑟𝑘 is the reward that the

agent receives after the 𝑘𝑡ℎ RL decision step.

In our setting, slice requests arrive at the agent and the agent decides whether to accept each one of them

in order of their arrival times. Slice requests may arrive at the same time slot at the agent where in this case

ties break arbitrarily. To avoid confusion, the indicator 𝑘 denotes the RL-based decision step for accepting

or not a slice corresponding to a request, whereas 𝑡𝑘 denotes the time slot of the control window where the

101096925 – 6Green – HORIZON-JU-SNS-2022 101 of 158

D2.3 – The 6Green Enabling Technologies

RL decision 𝑘 takes place. Multiple RL decision steps 𝑘,  𝑘 + 1,   … ,  𝑚 may refer to the same time slot 𝑡𝑘  =

 𝑡𝑘 + 1 =   …   =  𝑡𝑚 in the control window when concurrent slice request arrivals take place. For two RL

decision steps 𝑘 and 𝑚 with 𝑘  <  𝑚 it should hold that 𝑡𝑘   ≤ 𝑡𝑚  . Furthermore, slices that were not

accepted are given as input to the agent at the next time slot if their holding time has not expired. In this

case, they are considered as new slice requests with properly decreased holding times.

State: The state of the agent at the RL-decision step 𝑘 is the tuple (𝐴𝐶𝑘,  𝐴𝐵𝑘 ,  𝐴𝑇𝑘 ,  𝑆𝐼𝑘 ,  𝑡𝑘), where 𝐴𝐶𝑘  =

 [𝐴𝐶1(𝑘),   … ,  𝐴𝐶|ℇ|(𝑘),  𝐴𝑅𝐶(𝑘)] , collecting the available capacity of all ECs and of the RC; 𝐴𝐵𝑘   =

 [𝐴𝐵𝐹𝐻,1(𝑘),   … ,  𝐴𝐵𝐹𝐻, |ℇ|(𝑘),  𝐴𝐵𝑀𝐻,1(𝑘),   … ,  𝐴𝐵𝑀𝐻,|ℇ|(𝑘)] denotes the available bandwidth capacity of FH

and MH links; 𝐴𝑇𝑘   =  [𝐴𝑇𝐸𝐶,1(𝑘),   … ,  𝐴𝑇𝐸𝐶,|ℇ|(𝑘),  𝐴𝑇𝑀𝐻,1(𝑘),   … ,  𝐴𝑇𝑀𝐻,|ℇ|(𝑘)] collects the remaining

times that each EC or each MH link will remain active according to the configuration at step 𝑘 , 𝑡𝑘 is the

current time slot of the control horizon and 𝑆𝐼𝑘 contains necessary information regarding the slice about to

be processed. In particular, 𝑆𝐼𝑘   =  (𝑝𝑟𝑠,  𝐷𝑚𝑎𝑥,𝑠,  ℎ𝑡𝑠,  𝑐𝑠,1,   … , 𝑐𝑠, 𝑛𝑠
,  𝑏𝑠,   … ,  𝑏𝑠, 𝑛𝑠

) assuming that slice 𝑠 is

examined at step 𝑘 .

Action: The agent jointly decides which EC will serve the input slice as well as the number of VNFs of the slice

placed at the chosen EC. Specifically, the agent has to decide the ID, 𝑒  ∈  {1,   … ,  |ℇ| }, of EC and the number

of VNFs, 𝑛  ∈  {1,   … ,  𝑛𝑠 }, of the ordered service chain of the slice that will be placed at the chosen EC, i.e.,

the decision can be described as the pair (𝑒,  𝑛). For ensuring training efficiency, we map the above pair to

the one-dimensional space by the function 𝑓(𝑒,  𝑛)  =  (𝑒 − 1)  ⋅ 𝑛𝑠  +  𝑛. Therefore, a slice 𝑠 with arrival

time 𝑡𝑠 and holding time ℎ𝑡𝑠 is given to the agent at time 𝑡𝑘 ≥ 𝑡𝑠 (it may hold that 𝑡𝑘   >  𝑡𝑠 only if the slice

has been rejected at 𝑡𝑠. Then, the agent takes the decision 𝛼𝑘   ≠ 0 from which we obtain (𝑒𝑘 ,  𝑣𝑘) by the

inverse mapping of 𝑓(𝑒,  𝑛). The action 𝛼𝑘 encodes rejection of the input slice. Next, the decision variables

for 𝑡  ∈  {𝑡𝑘,   … ,  𝑡𝑘 + ℎ𝑡𝑠 − 1} are set as follows:

𝑥𝑠,𝑓
𝑒𝑘 (𝑡)  ← 1,  ∀𝑓  ∈  {1,   … ,  𝑣𝑘  },

𝑦𝑠,𝑓(𝑡)  ← 1,  ∀𝑓 ∈  {𝑣𝑘 + 1, … ,  𝑛𝑠 },  𝑖𝑓 𝑣𝑘 + 1  ≤ 𝑛𝑠,

𝑋𝑠(𝑡)  ← 1.

In case of rejection, the slice is not placed, 𝑋𝑠(𝑡𝑘)  ← 0 and its holding time is decreased by 1, i.e., ℎ𝑡𝑠  ←

ℎ𝑡𝑠  −  1. If the new holding time is equal to zero, the slice is rejected, alternatively, the slice will be given as

input to the agent at the next time slot of the control horizon, 𝑡𝑘+1.

Reward

The reward function is defined as the impact of the action to the objective function of the abovedefined

optimization problem. In particular, if the action is rejection the reward is set equal to 0. Otherwise, for an

action 𝑎𝑘 that is mapped to (𝑒𝑘 , 𝑣𝑘), applied to slice 𝑠, when the agent is in state 𝑠𝑘, the reward is given by:

𝑅(𝑠𝑘, 𝑎𝑘) = {
𝑅𝑒𝑣𝑠 − 𝑃𝐶𝑠, 𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 𝑠 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑘,

0, 𝑖𝑓 𝑠𝑙𝑖𝑐𝑒 𝑠 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑘,

 where 𝑃𝐶𝑠 = 𝑃𝐶𝑠
𝐸𝐶 + 𝑃𝐶𝑠

𝑅𝑈−𝐸 + 𝑃𝐶𝑠
𝐸−𝑅, and:

 𝑅𝑒𝑉𝑠 = 𝑝𝑟𝑠 ⋅ ℎ𝑡𝑠, is the total revenue obtained by the acceptance of slice,

101096925 – 6Green – HORIZON-JU-SNS-2022 102 of 158

D2.3 – The 6Green Enabling Technologies

 𝑃𝐶𝑠
𝐸𝐶 is the power consumption on the chosen EC:

𝑃𝐶𝑠
𝐸𝐶 = max{ℎ𝑡𝑠 − 𝐴𝑇𝐸𝐶,𝑒𝑘

(𝑘), 0}𝛾𝑃𝑚𝑎𝑥 + (1 − 𝛾)
∑ 𝑐𝑠,𝑓

𝑣𝑘
𝑓=1

𝐶𝐸𝑒𝑘

𝑃𝑚𝑎𝑥ℎ𝑡𝑠,

where 𝐴𝑇𝐸𝐶,𝑒𝑘
 is obtained from the current state 𝑠𝑘.

 𝑃𝐶𝑠
𝐸−𝑅 is the power consumption on FH link:

𝑃𝐶𝑠
𝑅𝑈−𝐸 = max{ℎ𝑡𝑠 − 𝐴𝑇𝐸𝐶,𝑒𝑘

(𝑘), 0}𝑃𝑛𝑒𝑡,𝑒
𝑓𝑖𝑥

+
𝑏𝑠,1

𝐶𝐵𝐹,𝑒
𝑃𝑛𝑒𝑡

𝑚𝑎𝑥ℎ𝑡𝑠,

 𝑃𝐶𝑠
𝐸−𝑅 is the power consumption on the MH link:

𝑃𝐶𝑠
𝐸−𝑅 = 𝟏{𝑣𝑘+1≤𝑛𝑠}[max{ℎ𝑡𝑠 − 𝐴𝑇𝑀𝐻,𝑒𝑘

(𝑘), 0} 𝑃𝑛𝑒𝑡,𝑒
𝑓𝑖𝑥

+
𝑏𝑠,𝑣𝑘+1

𝐶𝐵𝑀,𝑒
𝑃𝑛𝑒𝑡

𝑚𝑎𝑥ℎ𝑡𝑠],

 where 𝟏{𝑣𝑘+1≤𝑛𝑠} = 1 if 𝑣𝑘 + 1 ≤ 𝑛𝑠 and 0 otherwise.

Environment - Transition Function

 The transitions are defined per RL decision step for each slice request and not per time slot, i.e., more than

one updates are possible in a single time slot of the control horizon depending on the number of slices that

have arrived in the corresponding slot. Thus, to clearly explain the dynamics, we define the auxiliary set of

accepted slices 𝑅𝐴(𝑘). This set is initialized as empty, i.e., 𝑅𝐴(0) ← ∅ and whenever the agent takes an action

𝑎𝑘 ≠ 0 for a slice 𝑠(𝑘) the set is updated via 𝑅𝐴(𝑘 + 1) ← 𝑅𝐴(𝑘) ∪ {𝑠(𝑘)}, otherwise 𝑅𝐴(𝑘 + 1) = 𝑅𝐴(𝑘).

Firstly, the slice information is updated with the information of the next slice in the queue, which is

considered a stochastic transition. Regarding the network state, the computing and bandwidth capacities are

updated via the equations 𝐴𝐶𝑒(𝑘) = 𝐶𝐸𝑘 − 𝐶𝑒
𝑘(𝑡𝑘), 𝐴𝐵𝐹𝐻,𝑒(𝑘) = 𝐶𝐵𝐹,𝑒 − 𝐵𝐹𝐻,𝑒

𝑘 (𝑡𝑘), 𝐴𝐵𝑀𝐻,𝑒(𝑘) = 𝐶𝐵𝑀,𝐸,

where 𝐶𝑒
𝑘(𝑡𝑘), 𝐵𝐹𝐻,𝑒

𝑘 (𝑡𝑘), and 𝐵𝑀𝐻,𝑒
𝑘 (𝑡𝑘) can be computed via the corresponding equations defined in the

Problem Formulation section, by using the set 𝑅𝐴(𝑘), instead of 𝑅(𝑡𝑘), to reflect the temporary, in-time-slot,

configuration. Moreover, the active time can be calculated by the equations 𝐴𝑇𝐸𝐶,𝑒(𝑘) =

 ∑ max
𝑠∈𝑅𝐴(𝑘)

{𝑥𝑠,1𝑒(𝜏)}𝐻−1
𝜏=𝑡𝑘

 and 𝐴𝑇𝑀𝐻,𝑒(𝑘) = ∑ max
𝑠∈𝑅𝐴(𝑘)

{𝑥𝑠,1𝑒(𝜏) ⋅ 𝑦𝑠,𝑛𝑠
(𝜏)}𝐻−1

𝜏=𝑡𝑘
.

Safety - Constraints Handling

All the applied decisions should respect the hard constraints of our problem. We ensure constraint

satisfaction by applying action masking to violating actions [4]. Action masking is chosen as it is suitable for

discrete action spaces and in the problem at hand, we can deterministically determine if an action violates a

constraint.

RL-based Solution

We solve the previous MDP with the PPO algorithm. PPO is an on-policy, model-free RL algorithm and was

chosen because it is aligned with the discrete action space like in our problem, requires limited

hyperparameter tuning and it is compatible with the action masking mechanism.

4.3.7 Evaluation Results (RL)

Evaluation setting:

101096925 – 6Green – HORIZON-JU-SNS-2022 103 of 158

D2.3 – The 6Green Enabling Technologies

For the implementation of the simulation environment, we use Python version 3.10. The RL-based decision

making is based on the open-source implementation of the PPO algorithm with action masking in the Python

library StableBaselines3. The environment is modeled with the Gymnasium framework. Finally, the Gurobi

solver and particularly, the gurobipy Python package is employed to solve offline the optimization problem

for comparisons. In Table 7, we present the network infrastructure and slices parameters used for the

simulations. Two types of slices are considered in our evaluations, namely, URLLC and eMBB.

Table 7. Simulation Parameters.

For the comparative results, two distinct baseline methods are employed. The first is the “Oracle” method,

in which the above-defined optimization problem is solved under the unrealistic assumption that the future

slice requests are known on beforehand and provides the optimal solution of the problem. The second

baseline denoted by “RL-ST” is an RL agent similar to the one developed in the work of [6]. Contrary to our

proposed RL-agent, it does not optimize slice splitting, but, instead, considers a static splitting rule chosen

via experimentation. In particular, (i) URLLC slices are always split at their middle VNF and (ii) for the eMBB

slices, only their second VNF is placed at an EC/DU.

Evaluation metrics:

The evaluation metrics for the performance assessment are:

1. Acceptance ratio

2. Power Efficiency

3. Objective Value

We have already defined acceptance ratio and power efficiency. Following we define the objective value

metric.

Objective Value: It represents the total gain achieved by the agent at every step. It is defined as the revenue

obtained from the actual slice request realization, reduced by the power consumption incurred in the

resulting network state. This metric reflects the trade-off between minimizing power consumption and

maximizing overall revenue, either by increasing the acceptance ratio or by prioritizing slice requests with

higher priority.

It is worth mentioning that normalization of objective metrics is performed prior to simulations to mitigate

disparities arising from the diverse scales of objective-related values. Two set of experiments are conducted

to analyze, evaluate and compare the proposed method, which are detailed in the following subsections.

101096925 – 6Green – HORIZON-JU-SNS-2022 104 of 158

D2.3 – The 6Green Enabling Technologies

Discussion on the Results:

In the first set of experiments, we create 3 datasets with varying arrival rates per time slot in the control

horizon.

(a) Average number of arrivals. (b) Average number of active slices.

Figure 4-35: Dataset information.

Specifically, arrival patterns are generated according to three distinct distributions, as visualized in Figure

4-35a: Normal distribution, 𝑁(
𝐻

2
− 1, 0.9), an Exponential distribution, 𝐸𝑥𝑝(

4

𝐻
), and a Beta distribution,

𝐵𝑒𝑡𝑎(𝐻 − 2,
𝐻

6
), rescaled to the horizon interval and grouped by time slot. The number of requests per

scenario is chosen uniformly from the set {15,16, … , 20}. For each distribution, 1, 000 scenarios are used for

the training dataset and 10 for the test set. This experiment targets to evaluate the agent’s learning ability

by testing its behavior on diverse slice arrival distributions.

To begin with, we study the convergence of the training by performing 5 training instances, with different

seeds, on the Dataset 1 (Figure 4-35). The moving average of the cumulative reward per episode is plotted in

Figure 4-36, where we observe that after around 10, 000 episodes convergence is achieved. Similar behavior

is obtained for the other datasets.

Furthermore, we train 3 models on each dataset of Figure 49. Their achieved average objective value as well

as the objective value of the “Oracle” baseline method are plotted in Figure 4-37. In particular, Agent 1

represents the average of the models trained on Dataset 1, Agent 2 on Dataset 2, and Agent 3 on Dataset 3.

In Figure 4-37(a), which corresponds to a test set sampled by the distribution of Dataset 1, we observe that

Agent 1, which is trained on a similar dataset, performs slightly better than the other agents. In the same

sense, Agent 2 performs slightly better than the other agents on a test set sampled by the distribution used

for its training as depicted in Figure 4-37(b) and respectively, Agent 3 is the best performing agent for the

test set corresponding to the distribution used for its training in Figure 4-37(c).

101096925 – 6Green – HORIZON-JU-SNS-2022 105 of 158

D2.3 – The 6Green Enabling Technologies

Figure 4-36: Cumulative reward evolution during training.

(a) Cumulative average objective value on test dataset 1. (b) Cumulative average objective value on test dataset 2.

(c) Cumulative average objective value on test dataset 3.

Figure 4-37: Comparative evaluation under varying arrival patterns.

It is worth mentioning that the best performing agent for all datasets achieves an objective value close to the

optimal given by the oracle. Specifically, the best performing agent achieves at least 92.5% of the optimal

value. Furthermore, all agents perform well in all datasets, even on those that deviate from what they have

been trained on, which indicates the good generalization possibilities of our method.

The second set of experiments is designed to assess the agent’s ability to take the optimal splitting decision.

To this end, the agent is compared against the “RL-ST” method, in two test scenarios with varying total

101096925 – 6Green – HORIZON-JU-SNS-2022 106 of 158

D2.3 – The 6Green Enabling Technologies

number of requests. This comparison evaluates the adaptability and state-awareness of the proposed RL

method. In the second experiment, we train 3 models based on our method and 3 models according to the

“RL-ST” baseline to assess the importance of the dynamic splitting of slices. The Dataset 2 was used for each

training instance. We create two test sets: the low load set, which corresponds to the distribution of Dataset

2, and the high load set, which follows the arrival patterns of Dataset 2, but the total number of slices is

sampled from a discrete uniform distribution over the set {20, 21, … , 30}.

(a) Cumulative average acceptance ratio. (b) Cumulative average objective value.

(c) Cumulative average power efficiency.

Figure 4-38: Low load conditions.

In Figure 4-38(a), we can observe that the static splitting method leads to a high number of rejections, in

contrast to our method that has the ability to adjust the load between ECs and RC to achieve higher

acceptance ratio. The Figure 4-38(b), (c) show that the lack of adaptability of the “RL-ST” method leads to

deteriorated performance in the remaining key metrics as well. Specifically, our method shows performance

gains due to dynamic splitting on average 8.14% and at maximum 16.34% with respect to the objective value

metric, and on average 12.06% and at maximum 39.02% with respect to the power efficiency metric.

101096925 – 6Green – HORIZON-JU-SNS-2022 107 of 158

D2.3 – The 6Green Enabling Technologies

(a) Cumulative average acceptance ratio. (b) Cumulative average objective value.

(c) Cumulative average power efficiency.

Figure 4-39: High load conditions.

Figure 4-40: Slice splitting statistics.

The advantages of our method over the “RL-ST” method are more evident in the case of higher demand. In

Figure 4-39(b), we observe that the objective value achieved by the “RL-ST” method is significantly lower

than our agent, whereas our method outperforms the static splitting method also with respect to the other

two assessed metrics (Figure 4-39(a), (c)). In particular, the objective value achieved by our method is on

average 12.81% higher, and the average power efficiency improvement is 4.67%. In addition, the maximum

observed improvement on this test dataset is 34.70% concerning the objective value and 20.86% for the

power efficiency metric. In Figure 4-40, the statistics related to splitting are presented. Specifically, the

101096925 – 6Green – HORIZON-JU-SNS-2022 108 of 158

D2.3 – The 6Green Enabling Technologies

frequency of each splitting decision across all scenarios of the second set of simulations is plotted. We

observe that the agent tends to place only a single VNF at the EC for most slices, however, in many cases it

places more than one, even the entire slice, to achieve better performance.

4.4 Application Graph Deployment across Multiple Providers

4.4.1 Theoretical Foundation

In this subsection, we outline the theoretical foundations of the mechanisms developed within the

Experiential Network Intelligence Function (ENIF), designed as a component for intent lifecycle management,

presented analytically in [27]. These mechanisms are detailed in D3.4, where ENIF processes slice intents

expressed as application graphs provided by the Business Support System Function (BSSF). In particular, we

present the Application Graph Partitioning mechanism and the Inter-Provider Deployment Plan

mechanism, both forming part of ENIF’s Intent Provision functionality. Finally, we showcase the results of the

experimental evaluation of the intent lifecycle management framework across multiple providers leveraging

the simulation kit, as described in D2.4.

Application Graph Partitioning

A graph partitioning mechanism is developed to address the problem of deploying application graphs across

multiple providers [27]; in this problem formulation, each application is modelled as (𝐺𝑎 , 𝐿𝑎) . 𝐺𝑎 is a

connected, labelled, undirected graph (𝑉𝑎 , 𝐸𝑎); 𝑉𝑎 is the set of the application components, and 𝐸𝑎 is the set

of relationships between them. Each application component 𝑢 ∈ 𝑉𝑎 has a label [𝑐𝑢
𝐿 , 𝑐𝑢

𝐻] denoting the CPU

demand range; each relationship {𝑢, 𝑣} ∈ 𝐸𝑎 is labelled by [𝑏{𝑢,𝑣}
𝐿 , 𝑏{𝑢,𝑣}

𝐻], denoting the bandwidth demand

range. 𝐿𝑎 is a global label that characterizes the entire graph and models the application objective. In the

current work, the application objective is high performance or energy efficiency. Let 𝑃 = {1, … , 𝑝} be the set

of available providers. Every provider is associated with an infrastructure; this is also modelled as an

undirected, labelled connected graph 𝐺𝑠
𝑝

= (𝑉𝑠
𝑝

, 𝐸𝑠
𝑝

) , with {𝐶𝑖}
𝑖∈𝑉𝑠

𝑝 , {𝐵{𝑖,𝑗}}
{𝑖,𝑗}∈𝐸𝑠

𝑝 denoting the CPU

capacity on computing nodes and bandwidth on links, respectively. Additional important parameters

associated with each provider include the degradation factor 𝑑𝑝 (this factor expresses collective provider

profiling and its real potential to maintain promised resources reservations, increasing as the percentage of

intent violations increases), the energy consumption due to the consumption of CPU resources 𝑒𝑝
𝐶𝑃𝑈, the

intra-provider energy consumption due to the produced network traffic 𝑒𝑝
𝐵𝑊, and the inter-provider energy

consumption due to the produced network traffic 𝑒𝑝,𝑝′
𝐵𝑊 .

All valid graph partitions of the application graph are generated for each incoming request. For each valid

partition, all possible placements are tested. A candidate placement solution assigns the partition sub-graphs

to the available providers. The selected providers are called to suggest a deployment plan for the assigned

subparts arising from the solution of the optimization problem described below. In case of infeasibilities with

respect to the providers’ available resources, this candidate solution is rejected, otherwise an offering 𝑂 is

being formed based on the allocated CPU and bandwidth resources. Let {𝑦𝑢,𝑝}
𝑢∈𝑉𝑎,𝑝∈𝑃

 be an allocation

matrix where 𝑦𝑢,𝑝 is equal to 1 if the component 𝑢 is deployed in the provider 𝑝, otherwise 0. Similarly,

{𝑐𝑝𝑢,𝑝}
𝑢∈𝑉𝑎,𝑝∈𝑃

 and {𝑏𝑤{𝑢,𝑣},𝑝}
{𝑢,𝑣}∈𝐸𝑎,𝑝∈𝑃

 are defined to formulate the CPU and bandwidth allocated to a

provider 𝑝 for each application component and relationship, respectively. The offering varies according to

the application objective.

101096925 – 6Green – HORIZON-JU-SNS-2022 109 of 158

D2.3 – The 6Green Enabling Technologies

 Performance:

𝑂 = ∑ ∑ 𝑐𝑝𝑢,𝑝(1 − 𝑑𝑝)

𝑝∈𝑃𝑢∈𝑉𝑎

+ ∑ ∑ 𝑏𝑤{𝑢,𝑣},𝑝

𝑝∈𝑃{𝑢,𝑣}∈𝐸𝑎

+ ∑ ∑ 𝑦𝑢,𝑝 ∑ 𝑦𝑢,𝑝′𝑏{𝑢,𝑣}
𝐻

𝑃

𝑝′=𝑝+1

.

𝑃

𝑝=1{𝑢,𝑣}∈𝐸𝑎

 Energy efficiency:

𝑂 = ∑ ∑ 𝑐𝑝𝑢,𝑝(1 − 𝑑𝑝)𝑒𝑝
𝐶𝑃𝑈

𝑝∈𝑃𝑢∈𝑉𝑎

+ ∑ ∑ 𝑏𝑤{𝑢,𝑣},𝑝𝑒𝑝
𝐵𝑊

𝑝∈𝑃{𝑢,𝑣}∈𝐸𝑎

+ ∑ ∑ 𝑦𝑢,𝑝 ∑ 𝑦𝑢,𝑝′𝑏{𝑢,𝑣}
𝐻 𝑒𝑝,𝑝′

𝐵𝑊

𝑃

𝑝′=𝑝+1

.

𝑃

𝑝=1{𝑢,𝑣}∈𝐸𝑎

It is important to note that, for the performance-related objective, when components 𝑢 and 𝑣 are co-located

on the same physical node within a provider, the bandwidth term 𝑏𝑤{𝑢,𝑣},𝑝 is set equal to 𝑏{𝑢,𝑣}
𝐻 . Under the

assumption of infinite bandwidth on inter-provider links, the bandwidth allocated between two interacting

components corresponds to the upper bound when optimizing for performance and to the lower bound

when optimizing for energy efficiency. Each application optimizes 𝑂 over all valid graph partitions over all

candidate placements. Besides the initial deployment, this mechanism is triggered by Control Loop 3 during

the refinement of a single component and relocation to an alternative provider.

Intra-Provider Deployment Plan

For a single provider infrastructure, the provider 𝑝 ∈ 𝑃 must solve an online placement and resource

allocation problem [27]. An indicative way to formulate the problem is the following.

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 ∑ ∑ (𝑥𝑢
𝑖 ⋅ 𝑐𝑢

𝐻 − 𝑐𝑢
𝑖)

𝑖∈𝑉𝑠
𝑝𝑢∈𝑉𝑎

+ ∑ (

{𝑢,𝑣}∈𝐸𝑎

𝑏{𝑢,𝑣}
𝐻 − 𝑏̂{𝑢,𝑣})

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 (4.4.2) − (4.4.15) (4.4.1𝑎)

𝑥𝑢
𝑖 , 𝑓{𝑢,𝑣}

𝑖,𝑗
, 𝑓{𝑢,𝑣}

𝑗,𝑖
∈ {0,1}, (4.4.1𝑏)

𝑐𝑢
𝑖 , 𝑏{𝑢,𝑣}

(𝑖,𝑗)
, 𝑏{𝑢,𝑣}

(𝑗,𝑖)
, 𝑏̂{𝑢,𝑣} ∈ ℕ0, (4.4.1. 𝑐)

∀𝑢 ∈ 𝑉𝑎 , ∀𝑖 ∈ 𝑉𝑠
𝑝

, ∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

. (4.4.1. 𝑑)

The placement of application components is described by binary variables 𝑥𝑢
𝑖 , which indicate if a component

𝑢 is assigned to a computing node 𝑖. Each component is assigned to exactly one node.

∑ 𝑥𝑢
𝑖 = 1, ∀𝑢 ∈ 𝑉𝑎. (4.4.2)

𝑖∈𝑉𝑠
𝑝

We define constraints to ensure that the assigned components will not violate the remaining CPU resources

of a computing node. In contrast, the allocated resources remain within the acceptable range of the

components’ requests.

∑ 𝑐𝑢
𝑖 ≤ 𝐶𝑖, ∀𝑖 ∈ 𝑉𝑠

𝑝
, (4.4.3)

𝑢∈𝑉𝑎

𝑥𝑢
𝑖 ⋅ 𝑐𝑢

𝐿 ≤ 𝑐𝑢
𝑖 ≤ 𝑥𝑢

𝑖 ⋅ 𝑐𝑢
𝐻 , ∀𝑢 ∈ 𝑉𝑎 , ∀𝑖 ∈ 𝑉𝑠

𝑝
 (4.4.4)

101096925 – 6Green – HORIZON-JU-SNS-2022 110 of 158

D2.3 – The 6Green Enabling Technologies

We establish routing variables 𝑓{𝑢,𝑣}
(𝑖,𝑗)

 , 𝑓{𝑢,𝑣}
(𝑗,𝑖)

 to indicate whether an interaction {𝑢, 𝑣} is routed through a

specific link {𝑖, 𝑗}. Although links are modeled as undirected in each provider’s infrastructure, in our problem

formulation, we distinguish between the two possible directions, represented as directed links (𝑖, 𝑗) and

(𝑗, 𝑖). These directional links share the same underlying physical resources, particularly bandwidth capacity.

We impose the constraint that for each such pair, at most one direction can be selected. To ensure proper

path construction and prevent the creation of loops, we augment the initial graph 𝐺𝑠
𝑝

 by introducing a source

node 𝑠 that initiates all flows {𝑢, 𝑣}, and a destination node d where these flows terminate. Each node 𝑖 ∈

𝑉𝑠
𝑝

 is connected to the source node 𝑠 via a directed link (𝑠, 𝑖), and to the destination node 𝑑 via a directed

link (𝑖, 𝑑), both of which are assumed to have infinite bandwidth. In the following, we establish routing

constraints to capture the well-known flow conservation and unsplittable flow restrictions, and constraints

to prevent loops in a path. It is important to note that 𝛿−(𝑖) = { (𝑗, 𝑖) ∣∣ {𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

} denotes the incoming

links of a node 𝑖 ∈ 𝑉𝑠
𝑝

, assuming that the initial undirected graph 𝐺𝑠
𝑝

 is treated as a directed graph where

each undirected link is replaced by two directed links in opposite directions. Similarly, 𝛿+(𝑖) =

{ (𝑖, 𝑗) ∣∣ {𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

} denotes the set of outgoing links from node 𝑖.

∑ 𝑓{𝑢,𝑣}
(𝑖,𝑗)

𝑗∈𝛿+(𝑖)∪{𝑑}

− ∑ 𝑓{𝑢,𝑣}
(𝑗,𝑖)

= 0, (4.4.5)

𝑗∈𝛿−(𝑖)∪{𝑠}

∑ 𝑓{𝑢,𝑣}
(𝑖,𝑗)

≤ 1, (4.4.6)

𝑗∈𝛿+(𝑖)∪{𝑑}

∑ 𝑓{𝑢,𝑣}
(𝑗,𝑖)

≤ 1, (4.4.7)

𝑗∈𝛿−(𝑖)∪{𝑠}

𝑓{𝑢,𝑣}
(𝑠,𝑖)

= 𝑥𝑢
𝑖 , (4.4.8)

𝑓{𝑢,𝑣}
(𝑖,𝑑)

= 𝑥𝑣
𝑖 , (4.4.9)

∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀𝑖 ∈ 𝑉𝑠
𝑝

Similarly to computing nodes, we define capacity constraints for the bandwidth resources of links.

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑗)

+ 𝑏{𝑢,𝑣}
(𝑗,𝑖)

≤ 𝐵{𝑖,𝑗}, ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

, (4.4.10),

{𝑢,𝑣}∈𝐸𝑎

𝑓{𝑢,𝑣}
(𝑖,𝑗)

⋅ 𝑏{𝑢,𝑣}
𝐿 ≤ 𝑏{𝑢,𝑣}

(𝑖,𝑗)
≤ 𝑓{𝑢,𝑣}

(𝑖,𝑗)
⋅ 𝑏{𝑢,𝑣}

𝐻 , (4.4.11)

𝑓{𝑢,𝑣}
(𝑗,𝑖)

⋅ 𝑏{𝑢,𝑣}
𝐿 ≤ 𝑏{𝑢,𝑣}

(𝑗,𝑖)
≤ 𝑓{𝑢,𝑣}

(𝑗,𝑖)
⋅ 𝑏{𝑢,𝑣}

𝐻 , (4.4.12)

∀{𝑢, 𝑣} ∈ 𝐸𝑎 , ∀{𝑖, 𝑗} ∈ 𝐸𝑠
𝑝

∪ { (𝑠, 𝑖) ∣∣ 𝑖 ∈ 𝑉𝑠
𝑝

} ∪ { (𝑖, 𝑑) ∣∣ 𝑖 ∈ 𝑉𝑠
𝑝

}

To guarantee the same bandwidth allocation at each physical link of a formed path, we introduce new integer

variables 𝑏̂{𝑢,𝑣} that denote the bandwidth assigned for the interaction {𝑢, 𝑣} and add the following

bandwidth-conservation constraints.

∑ 𝑏{𝑢,𝑣}
(𝑠,𝑖)

= 𝑏̂{𝑢,𝑣}, (4.4.13)

𝑖∈𝑉𝑠
𝑝

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑑)

= 𝑏̂{𝑢,𝑣}, (4.4.14)

𝑖∈𝑉𝑠
𝑝

∑ 𝑏{𝑢,𝑣}
(𝑖,𝑗)

𝑗∈𝛿+(𝑖)∪{𝑑}

− ∑ 𝑏{𝑢,𝑣}
(𝑗,𝑖)

= 0

𝑗∈𝛿−(𝑖)∪{𝑠}

, (4.4.15)

∀{𝑢, 𝑣} ∈ 𝑉𝑎, ∀ 𝑖 ∈ 𝑉𝑠
𝑝

101096925 – 6Green – HORIZON-JU-SNS-2022 111 of 158

D2.3 – The 6Green Enabling Technologies

4.4.2 Experimental Evaluation

As described in detail in D2.4, the simulation kit captures the creation of application graph services, their

deployment on the multi-provider infrastructure and the continuous lifecycle management of their intent. The

management framework introduces three control loops, with the first one performing semantic and syntactic

validation of the client intent before the initial deployment, the second control loop models short-term intra-

provider orchestration actions based on the well-being of the application component and the third control loop

implements a long term intent monitoring, proposing intent refinements and inter-provider re-deployments as

well as assessing the quality of each provider, useful information for subsequent deployments.

For the experimental evaluation, we assume that each application request has an aggregate workload profile

(which is unknown to the control loops) of three different types: Variable, Bursty and Uniform. Apart from

its type, the aggregate workload also has one out of three volume levels (Low, Medium, High) [27]. The

aggregate workload is modelled as a Markov Modulated Poisson Process (MMPP), so the type of the

workload determines its transition probability matrix of the next state of the internal Markov chain, and the

volume sets the Poisson rate’s values, based on which the aggregate workload object generates its value

(following Poisson distribution) for the current slot. Furthermore, each component has also a Type (Type1,

Type2, Type3) as part of the user intent which classifies the component either as CORE or SUPPORT. We

assume that Type1 components are CORE and the rest are SUPPORT. This distinction is necessary for

capturing the importance of each component in the application graph since CORE components are

considered to be more resource demanding and in general require more CPU resources when compared with

their SUPPORT counterparts. The simulation kit handles CPU and Bandwidth resources and their amount is

declared through three distinct ranges (LOW, MEDIUM, HIGH), while only the CPU resource has a dynamic

behavior. At each timeslot the generated CPU aggregate workload is distributed at the application

components based on their own internal state and Type, and by translating through a linear function, we

produce the final CPU consumption for each component for the timeslot. Concerning the infrastructure

providers, each provider has a type based on which its monetization and resource quality (reduced due to

oversubscription of the shared physical resources) are determined. The corrective actions of the three

control loops are based on the implementation provided in MECC paper.

Two deployment scenarios are examined, the first focusing on an intent with high performance objective,

identified by index P, and the second on an intent with high energy efficiency objective, identified by index

E. The total number of components per application graph is considered to be up to four, while the

infrastructure of each provider may reach up to ten nodes. Three infrastructure providers are considered,

each of a different type; Performance-Oriented, Moderate-Cost, and Energy-Efficient. The three types offer

high to low quality resources and high to low cost policies per CPU/bandwidth unit, with the inter-provider

communication cost being higher that the intra-provider communication. Requests for application

deployment, described by an intent of type P or type E, continuously arrive in the system.

We compare the results achieved based on a Legacy Request Management (LRM) approach where no intent

control loop is activated but only a mechanism that, during application runtime, initial resources reservations

are attempted to be maintained at all times within the provider (a common alternative to intent control loop

2 that does not require applications to expose information to the provider), and the Intent Lifecycle

Management (ILM) approaches where various control loops are activated. Six scenarios are considered, with

each one activating different control loops, as follows: (i) LRM method (Legacy), (ii) LRM with ILM control

loop 1 (Loop 1), (iii) LRM with ILM control loop 3 (Loop 3), (iv) LRM with ILM control loop 1 and 3 (Loop 1 & 3),

(v) LRM with ILM control loop 2 (Loop 2), and (vi) all ILM control loops (All Loops). When control loop 2 is

activated, violations are considered periodically within a short time interval (equal to 100 time slots) and actions

are taken at the end of each period. The same short period is considered in the Legacy case as well. In the case

101096925 – 6Green – HORIZON-JU-SNS-2022 112 of 158

D2.3 – The 6Green Enabling Technologies

of an activated loop 3, actions are taken after considering violations (as well as actual provided resources) for a

longer period (every 1000 slots). Loop 1 takes initial corrective actions on the intent definition based on the

predicted application profile. Loop 2 makes temporal adjustments within the provider to reduce violations

according to the short-term application profile. Loop 3 contributes to building the actual application profile and

the provider profile, driving associated actions; reconsidering intent definition and intent placement

considering actual application demands and actual resources provided. The fundamental difference between

Loop 2 and the considered Legacy approach is that Loop 2 uses information about violations exposed by the

application, where in the Legacy case there is no insight on the application's internal operation but only an

external view of the resources usage and the effort is to maintain initial reservations.

The metrics used for evaluation include the total intent violations and the percentage of intents with

violations to the accepted intents for both type P and E intents, the cost incurred by deploying the

applications across the providers in terms of CPU and bandwidth, and the deployed components per

provider. Intent violation occurs for request i at timeslot t when at least one component’s CPU consumption

is greater than the effective CPU (the actual CPU offered to the component by the provider as a result of the

oversubscription). For the evaluation of the proposed framework, we examined 10 sets of providers and 5

sets of requests per provider set, thus conducting 50 experiments in total and presenting the average of the

aforementioned metrics across all experiments.

In Figure 4-41, we show the total intent violations for both type P and type E intents. The LRM scenario is

shown to have the poorest performance in reducing intent violations in both cases. In the type P intent

(Figure 4-41(a)), significant improvement occurs in case of activation of Loop 2, since it enables dynamic

resource management. Loop 1 also achieves remarkable performance by successfully profiling requests to

acquire adequate resources for their execution at initial deployment. Loop 3 reduces violations on a smaller

scale due to larger activation windows but if coupled with Loop 1, they outperform both Loop 1 and Loop 2

scenarios. When all loops are activated, the system achieves its best performance, as Loop 1 ensures

sufficient resources for initial deployment, Loop 2 takes fast corrective actions for resource increase and Loop

3 guides initial and re-placement of type P intents at higher quality providers. In case of type E intents, a

similar behavior can be observed (Figure 4-41(b)) with Loop 3 prioritizing migrations to lower cost providers.

Loops 1 & 2 prove to be the most effective loops by prioritizing performance maximization and share

common implementation across intent types, explaining the similar pattern in the scenarios behavior.

(a) High performance intent

(b) Energy efficient intent

Figure 4-41: Intent Violations per time slot [27].

101096925 – 6Green – HORIZON-JU-SNS-2022 113 of 158

D2.3 – The 6Green Enabling Technologies

In Table 8, we present the amount of accepted requests for each scenario and intent type. It is clear that the LRM

and Loop 3 approaches perform the best in terms of acceptance while Loops 1 & 2 exhibit the worst acceptance

capability as both loops rely on greedy resource increase to reduce intent violations which leads to fast depletion

of available resources for new requests. On the other hand, Loop 3, after examining an intent's workload pattern

for a long time-window, it may decide to lower resources thus ensuring cost reduction and better provider

availability without sacrificing performance. The All Loops scenario balances the aforementioned approaches,

showcasing the trade-off between over-provisioning and provider acceptance ratio.

Table 8. Accepted requests per scenario and intent type [27].

To enable a direct comparison of the lifecycle scenarios, we express their intent violations at timeslot t as a

percentage of the total requests they have accepted up to that point. The resulting plots (Figure 4-42) confirm

the insights drawn from the raw violation counts and clearly show that the All Loops scenario consistently

achieves the highest quality in intent deployments. As anticipated, once the scenarios converge, the

percentages for type P intents are lower than those for type E intents, illustrating the balance between

guaranteeing performance and reducing cost.

(a) High performance intent

(b) Energy efficient intent

Figure 4-42: Intent Violation percentage per time slot [27].

In Figure 4-43, the CPU cost (serving as an indicator of energy usage) is notably lower for type E intents,

demonstrating the effectiveness of the control loops and the initial deployment strategy under this intent

directive. For type P requests, All Loops exhibits the highest energy consumption, which contrasts with the

behavior observed for type E intents, where it aligns well with the goal of minimizing cost. Overall, Loop 3 is

the primary driver of cost optimization, as it is the only control loop that accounts for the intent directive,

resulting in higher consumption in the High-Performance context and the lowest consumption in the Energy-

Efficient context.

101096925 – 6Green – HORIZON-JU-SNS-2022 114 of 158

D2.3 – The 6Green Enabling Technologies

(a) High performance intent

(b) Energy efficient intent

Figure 4-43: CPU cost (×) per time slot [27].

In Figure 4-44, we present the bandwidth cost for each scenario. For type P intents, LRM, Loop 2 and Loop 1

present the highest bandwidth cost as their initial placement is completely random and does not consider

provider cost. The scenarios that have Loop 3 activated will perform migrations that will gather many

components that where mistakenly placed on lower cost providers on the higher quality providers, thus

reducing their inter-provider communication. For type E intents, the bandwidth cost is significantly reduced

when compared to the type P intents, as the framework prioritizes placement on the lower cost provider and

ideally on the same node. When migrations have to take place (Loop 2 & 3) the deployment manager often

changes the placement node of the component, thus inflicting intra-provider communication cost and in

rarer cases inter-provider cost.

(a) High performance intent

(b) Energy efficient intent

Figure 4-44: Bandwidth cost (×) per time slot [27].

In Figure 4-45, we show the evolution of the number of components deployed per type of provider over time

for the All Loops scenario. For type P intents, before the Loop 3 activation of the first accepted request

(around 1000 slots), deployment manager assumes high quality across all providers which constitutes the

placement decision a random choice when the same amount of resource offering occurs. This will result in

many type P components being placed on the Energy Efficient provider, where their performance will fall

short. When Loop 3 updates Deployment Manager knowledge about the degradation factor of each provider,

101096925 – 6Green – HORIZON-JU-SNS-2022 115 of 158

D2.3 – The 6Green Enabling Technologies

we can observe intense inter-provider migration towards Performance-Oriented Provider. For type E intents,

the deployment manager is heavily inclined in placing all components to the cheaper provider if possible, which

rapidly increases the number of components of the Energy Efficient provider, rapidly depleting its resources,

and repeating the process with the next available low cost provider, in this case the Moderate-cost one.

(a) High performance intent

(b) Energy efficient intent

Figure 4-45: Deployed components per provider over time [27].

Overall, control Loops 1 & 2 appear to be the most effective when considering intent satisfaction, while loop

3 successfully captures the client's intent and ensures performance or cost reduction. Loop 1 relies on

successful application profiling to efficiently suggest intent refinements. However, when this profiling is

coarse, greedy and rule-based it can lead to over or under provisioning of resources. Loop 2 on the other

hand, is a reliable mechanism that can make short-term resource adjustments based on metrics exposed to

the provider about the "well-being" of the application, ensuring continuous satisfaction, with the trade-off

of increasing energy consumption. Finally, Loop 3 can provide higher quality intent suggestions as well as

metrics about the quality of the provider, optimizing energy consumption ideally without sacrificing

performance. The whole experimentation setup, results and discussion is described in [27].

101096925 – 6Green – HORIZON-JU-SNS-2022 116 of 158

D2.3 – The 6Green Enabling Technologies

 Green Observability and Profiling in the 5/6G Continuum

The overall 6Green observability framework is depicted in Figure 5-1. Metrics for services executed over

on-premise or public infrastructures are collected through a classical Time Series Database (TSDB) solution

and customized probes. Policies are used to reconcile information presented to the framework, either to

extract KPIs from infrastructures metrics, either to simulate resources usage for external web services.

Resulting information is provided to analytics modules and dashboards.

Figure 5-1: 6Green observability framework architecture.

5.1 Data Fusion Mechanisms

We consider data fusion of observability signals that can be classified into metrics, logs and traces (see

Figure 5-2). Metrics are numerical data that capture the state of a system at a particular time or over a period.

They serve as basic information for quick response and decision-making within an orchestration system, such

as rule-based mechanisms for auto-scaling based on predefined thresholds. These metrics can take various

forms, including counters (e.g., counting incoming HTTP requests), gauges (e.g., measuring the current depth

of a queue), or histograms (e.g., depicting the duration of a request). Examples of commonly monitored

metrics encompass resource usage (like CPU or memory usage), traffic volume (such as incoming or outgoing

traffic per second), and the number of requests handled (e.g., HTTP requests served per second). Monitoring

components within cloud and edge computing orchestration platforms typically provide access to a wide

array of such metrics [28].

Logs are structured records of individual events, presented in a textual format that humans can readily

understand. They typically detail usage patterns, events, activities, and operations within an orchestration

system, such as application debug or error messages. By aggregating data from multiple logs, valuable

insights into specific situations or events can be gleaned. Third-party tools, compatible with cloud and edge

computing orchestration platforms, often facilitate access to these logs [28].

A distributed trace encompasses a sequence of operations that represent a unique transaction managed by

an application. Consequently, these traces can be correlated with a request's scope. Each transaction or

request comprises a series of operations spanning across the microservices of the application. By analyzing

distributed traces, we can gain better insights into the events occurring during a distributed transaction and

pinpoint any delays or bottlenecks within the overall process. Common examples of insights provided by

101096925 – 6Green – HORIZON-JU-SNS-2022 117 of 158

D2.3 – The 6Green Enabling Technologies

distributed tracing include latencies in software execution within microservices, interactions between

microservices, and end-to-end latencies for fulfilling specific requests. Third-party tools, with varying degrees

of integration and interoperability, typically provide access to distributed tracing information within cloud

and edge computing orchestration platforms [28].

Observability involves integrating various types of signals, including metrics, logs, and traces. When deciding

which signals to monitor, it's important to balance the richness of information available against

considerations of performance and complexity. Once the appropriate set of signals has been identified,

collecting relevant information relies on properly instrumenting the deployed software.

Figure 5-2: Classification of signals into metrics, logs and traces [28].

In order for a data model to be able to support orchestration in the compute continuum, it needs to support 2

main aspects:

 a representation of the resources, i.e., a model of the computing and the network infrastructure,

 an application graph representation, modelling designed service communication patterns and data

transfers.

Taking into consideration a multi-cluster infrastructure, the main entities constituting the computing

representation should include the cluster and the corresponding physical or virtual computing nodes of each

cluster. The network representation is described as a graph of network connections (links) between network

nodes (e.g. routers/switches), while it is also crucial to provide support for virtual links created by network

controllers (e.g. SDN) to make network performance guarantees (Figure 5-3). Runtime information of

applications placed in the continuum is important to be registered close to the infrastructure for supporting

orchestration actions. Specifically, a deployment identifying the placement cluster and replication factor of

each service represents the application instance, while an individual runtime instance records a replica’s

resource utilization and state.

101096925 – 6Green – HORIZON-JU-SNS-2022 118 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-3: Data representation.

A detailed application description is important for identifying its underlying complexity and its connectivity

characteristics that can be utilized to optimize its performance (Figure 5-4). An application graph is defined

as a network of services interacting with each other through their endpoints. For one service to access

another, a service call (link) is made having a specific payload size. A sequence of service calls makes up a

directed acyclic graph (DAG), a workflow executing a certain functionality. The service’s runtime information

is recorded in the infrastructure model as discussed above, so each service maps to a deployment.

Figure 5-4: Application/Service representation.

101096925 – 6Green – HORIZON-JU-SNS-2022 119 of 158

D2.3 – The 6Green Enabling Technologies

5.2 Profiling Mechanisms

A recent and comprehensive study published by CNIT [29], has clearly summarized the profiling power

consumption most used approaches in the following Figure 5-5, where we schematically see the most

interesting aspects:

 Workload characterization and instrumentation.

 Resource instrumentation.

 Resource Specific workloads.

 Direct power measurements.

 Temperature (e.g., CPU package temp, Fan Speed etc.).

Figure 5-5: Profiling Power Consumption.

5.2.1 The Rating Operator Tool

The Rating Operator serves as a Kubernetes application. Operators can be considered as extensions to the

microservices hypervisor. The Rating Operator follows this approach to extend the native API. Functionally,

it enables the transformation of metrics into customizable Key Performance Indicators (KPIs) and provides

interfaces for their use in monitoring, supervision or other purposes. This multi-tenant, configurable, and

lightweight operator addresses users’ rating needs. Our involvement in the 6Green Project focused on enhancing

101096925 – 6Green – HORIZON-JU-SNS-2022 120 of 158

D2.3 – The 6Green Enabling Technologies

the tool's ability to model metric transformation rules as units, previously implemented directly in the source

code. In the context of the transformation logic we support, metrics are sourced from various time series

databases (TSDBs), encompassing a wide range of business values with fine diversity and granularity. In response,

we opted to enhance the efficiency of TSDB queries by introducing a dynamic approach, consolidating and

optimising them. This same principle was extended to the values propagated in these TSDBs queries.

The Rating Operator tool facilitates the transformation of metrics into Key Performance Indicators (KPIs),

allowing users to define rules for this conversion. For instance, it empowers users to convert metrics related to

compute resources into KPIs representing energy consumption, carbon footprint, or pricing. Figure 5-6 also

illustrates an example of a Rating Operator use case of carbon emission calculation from energy consumption

(orange part). In this example, illustrating the API developed as part of the project, a first template (query, in

blue) provides a dynamic query, second templates (values, in pink) supply the values populating the query.

Finally, the system returns respective objects (instances, in green) reporting the metric(s) transformation.

Orange part illustrates an example of a Rating Operator use case of carbon emission calculation from energy

consumption.

Figure 5-6: Example of a Rating Operator use case.

The Rating Operator tool is oriented towards providing a versatile solution for metrics transformation at

different architectural levels. By offering this capability, it becomes a pivotal component in the ecosystem,

enabling the exposure of aggregated metrics and Key Performance Indicators (KPIs) directly to applications.

This strategic approach significantly reduces the reliance on centralised metrics collection and mitigates

concerns related to the data volume resulting from metrics collection. The core of this concept is the

empowerment of each architectural layer to define and generate metrics relevant to its specific functions.

This decentralisation of metrics transformation ensures that applications can access and utilise tailored

metrics and KPIs without the need for a centralised authority. This not only streamlines the integration of

metrics into application logic but also enhances the overall energy efficiency of the system. Furthermore,

by allowing metrics transformation at various architectural levels, the Rating Operator contributes to a

more distributed and responsive system. Applications can dynamically adapt to changing conditions by

utilising locally transformed metrics, leading to a reduction in the latency associated with centralised

metrics collection. This, in turn, enhances the real-time nature of the data available to applications,

fostering agility and responsiveness.

101096925 – 6Green – HORIZON-JU-SNS-2022 121 of 158

D2.3 – The 6Green Enabling Technologies

In the realm of efficient metrics management, the utilisation of Custom Resource Definitions (CRDs) within

the Rating Operator tool proves to be a game-changer. Specifically, when applied to remote servers and

services, CRDs empower users to finely tune and customise the configuration of resources, thereby enabling

precise control over the pace of metrics retrieval. Users can define tailored configurations for each remote

server or service, outlining the parameters governing metrics retrieval intervals. This granular control is

important, especially in diverse and dynamic environments where different servers or services may have

distinct requirements for metric update frequencies. Moreover, by applying scheduling to CRDs, users can

dynamically reconfigure the metrics retrieval pace based on evolving needs or changing conditions. This

adaptive approach ensures that the system optimally adjusts to varying workloads or operational demands,

enhancing overall efficiency. For example, during periods of high demand or critical activities, users can

increase the frequency of metrics retrieval for specific servers or services. Conversely, during less critical

times, they can schedule a more relaxed pace to conserve resources and minimise unnecessary data transfer.

This capability not only optimises resource utilisation but also contributes to the responsiveness and

adaptability of the system.

Figure 5-7 illustrates the use case of metrics transformation at various architectural levels. The observation

of the metric update pace can be leveraged to define new CRDs configuration to limit collection pace in

regards to these updates frequencies.

Figure 5-7: Illustration of Rating Operator providing metrics transformation at various architectural levels.

In addition to these features, we recently developed the Rating Operator API, which is also used to expose

metrics to users. This API offers a structured and flexible interface to interact with transformed metrics.

Endpoints are organized by their respective resources (e.g., namespaces, pods), and follow a consistent

grammar across categories.

101096925 – 6Green – HORIZON-JU-SNS-2022 122 of 158

D2.3 – The 6Green Enabling Technologies

Below is an example demonstrating a simple query to an endpoint that requires no parameters:

$ curl http://127.0.0.1/namespaces

{

 "results":[{"namespace":"kube-system","tenant_id":"default"},{"namespace":"longhorn-

system","tenant_id":"default"},{"namespace":"monitoring","tenant_id":"default"},{"namespace":"rating","tenant_id":"de

fault"},{"namespace":"unspecified","tenant_id":"default"}],"total":5

}

Another example uses URL parameters. Endpoints of this type are labeled as [URL]. In the example below,

we use the /metrics/<metric>/<aggregator> pattern. The aggregator handles the time range, and parameters

are passed via the URL. Here, the 'daily' aggregator is used:

We use the 'daily' aggregator for the example.

$ curl http://127.0.0.1/metrics/co2-simulation-eu/daily

{"results":[{"value":15.07968}],"total":1}}

Monitoring Pace Scheduler

Traditional system monitoring often depends on fixed scraping intervals, where metrics are collected at

predetermined, constant times (e.g., every x seconds or x minutes). Although straightforward to

implement, this method presents several drawbacks, especially in dynamic environments or user-centric

applications with fluctuating activity levels. Fixed intervals can lead to inefficient resource utilization, as

data is continuously collected even when there are no meaningful updates, consuming unnecessary

computation and network resources. This inefficiency becomes more pronounced when monitoring

metrics that rarely update. Moreover, in highly dynamic systems, fixed intervals might miss capturing

critical changes promptly, leading to gaps in important data. In resource-limited environments, the

constant overhead from fixed scraping can further strain system performance without offering additional

value when the system is stable. Traditional methods also lack flexibility, making them less suitable for

adaptive, workload-sensitive monitoring.

To address these limitations, we introduce the Monitoring Pace Scheduler, a system that dynamically adjusts

scraping intervals based on the observed rate of metric updates. When metrics are stable, the scraping

frequency is reduced to minimize redundant data collection. Conversely, during periods of rapid change, the

frequency is increased to ensure accurate and timely data capture. This adaptive strategy improves overall

resource efficiency—reducing computation, network load, and storage—making it highly suitable for scalable

and dynamic environments. A configurable threshold allows users to balance between monitoring precision

and resource efficiency, enabling flexibility depending on application needs and metric behavior.

Figure 5-8 shows the result of applying this dynamic monitoring approach. Data points collected under

thresholds of 0.1% and 0.5% demonstrate that the overall shape and trends of the metric are preserved,

while the number of collected points is reduced compared to a baseline fixed-interval method. This

reduction underscores the system’s ability to adapt scraping intervals, preserving data fidelity while

optimizing resource usage.

http://127.0.0.1/namespaces
http://127.0.0.1/metrics/co2-simulation-eu/daily

101096925 – 6Green – HORIZON-JU-SNS-2022 123 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-8: Total CPU utilization (%) with 0.1% threshold, influencing data collection frequency.

Table 9: Comparison of the baseline and dynamic groups with different thresholds.

Groups

Median

scrape

interval (s)

Precision

(%)
Overlay_dx MAPE (%)

Bandwidth

Reduction

(%)

Network

Traffic

Reduction

(%)

Storage

Reduction

(%)

Baseline 15 - - - - - -

Dynamic

(0.1%)
20 75.39 0.956 3.48 34.5 34.6 49.5

Dynamic

(1%)
46 73.32 0.9473 4.67 34.6 34.7 49.5

Dynamic

(10%)
36 67.76 0.9377 4.74 34.9 34.9 49.5

Dynamic

(80%)
80 60.00 0.8084 24.5 37.6 37.6 50.5

5.2.2 Resource Profiling Related to Elasticity and Resource Efficiency

Resource autoscaling is a key characteristic of network management systems that wireless network operators

are using in order to provide highly reliable, low latency, large-scale networking services. 5G networks are

the recent answer to tackle this growing networking demand. One of the key approaches is deploying

network services in a cloud-native environment.

In case of containerized network services, Kubernetes provides a threshold-based solution for dynamic

scaling, Horizontal Pod Autoscaler (HPA18). For a given time 𝑡𝑖 and a performance metric, HPA calculates the

required number of replicas 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑  [𝑡𝑖 ] based on:

𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑  [𝑡𝑖 ] =   ⌈𝑃 [𝑡𝑖 ]  ⋅
𝑀 [𝑡𝑖 ]

𝑀𝑑𝑒𝑠𝑖𝑟𝑒𝑑  
⌉

18 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

101096925 – 6Green – HORIZON-JU-SNS-2022 124 of 158

D2.3 – The 6Green Enabling Technologies

where current replica count denoted as 𝑃 [𝑡𝑖], 𝑀[𝑡𝑖] denoted as the current metric value and 𝑀𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the

desired threshold for the selected metrics. This solution is reactive and HPA takes scaling actions only if the

static threshold is met. When a scaling action is triggered, there is a time delay for creating and making a new

replica operational, which might affect the QoS based on the resource demand at that time.

An alternative solution for Kubernetes HPA is proposed in [30], where an AI-assisted proactive scaling

solution is developed, that can balance the trade-off between operational cost and QoS for a CNF deployment

in a cloud-native environment. To be proactive, the proposed solution utilizes a multi-variant multiple steps

time series forecasting Gated Recurrent Unit (GRU) neural network-based model that predicts the future

resource consumption of the pods which belongs to a single deployment. The dynamic scaling is calculated

by dynamic thresholding rules that utilize the predicted metric values provided by the forecasting model.

Solutions leveraging Artificial Intelligence (AI), Machine Learning (ML), and Data Analytics (DA) show great

promise in delivering significant advancements in 5G and beyond complex network environments. By utilizing

those technologies, we can propose innovative mechanisms for analysing and predicting network behavioural

patterns, and extract profiles associated with the resource requirements of network services. In [31] an

application profiling modelling component is introduced, that collects a set of distinct resource profiles, all

associated with a resource allocation solution that calculates scaling decisions based on a simple ML technique,

without violating QoS requirements, in case of Kubernetes Edge Clusters. This ML technique involves the

classification of distinct combinations of computing resources concerning the application’s service rate.

In 6Green we could follow the approach of [32], where an integrated framework based on open-source tools

is proposed, that offers flexibility in service providers to realise experiments and achieve profiling of their

applications in terms of resource and elasticity efficiency. The benchmarking describes the process of running

experiments. After the benchmarking process, the resulting data is kept in a time-series database from where

it can be picked up for the profiling process.

A set of analysis processes are supported to extract insights [32] such as:

 Resource efficiency analysis for the identification of resource consumption trends and capacity limits,

used for planning optimal reservation of resources. The considered monitored metrics combine a

resource usage metric (e.g. CPU usage, memory usage) with a service output metric (e.g., traffic

served, HTTP requests served, active users). Such an analysis is realised through the production of

(multiple) linear regression models.

 Elasticity efficiency analysis to assess the performance of scaling operations, along with the impact of

scaling actions in the service output efficiency (e.g., traffic served by a VNF). Elasticity efficiency is

expressed as a pair of discrete metrics, namely application capacity change (incremental capacity

change related to a scaling action) and capacity change lead time (time required for a capacity

change). Such an analysis is primarily based on monitoring and visualisation of elasticity actions. In a

second stage, training and application of machine learning models for automated elasticity actions

enforcement is considered by service providers, facilitating the undertaking of proactive elasticity

actions for guaranteeing QoS.

 Correlation analysis for the identification of strong and statistically significant correlations among

infrastructure and VNF-specific metrics, leading to various insights (e.g., which parameters are highly

dependent, which parameters can create bottlenecks in the overall performance). Such an analysis is

realised through correlograms.

 Forecasting based on time-series decomposition mechanisms. Such mechanisms are applied over

resource usage or workload metrics and provide feedback to elasticity efficiency mechanisms. Various

forecasting models are supported based on the type of the time series data.

101096925 – 6Green – HORIZON-JU-SNS-2022 125 of 158

D2.3 – The 6Green Enabling Technologies

 Graph analysis for identification of bottlenecks in software functions' calls and the consideration of

software updates for optimal service provision. Such an analysis is valuable for software consisted of

microservices, where performance issues and bottlenecks due to software functions' calls can be

identified and provided as feedback to software developers.

5.3 Estimation of Energy Consumption of Hardware Components

Estimating the embodied energy consumption of virtualized components (i.e. containers and VMs) is

challenging, primarily because hardware resources are not reserved for single virtual components. In 6Green,

MDAF and IDAF are utilized to map hardware power consumption effectively.

Scaphandre19, which relies on Intel RAPL20 counters and on the time spent on each process by CPU to

compute the power consumption per process (containers and VMs), traditionally measures only direct power

consumption of virtual components at the CPU and, only in some cases, DRAM controller levels.

However, it is noted that indirect contributions arise from processes necessary to maintain servers and

virtualized environments. Our approach extends Scaphandre by incorporating "embodied" power

consumption, defined as power usage from kernel-level processes not directly attributed to containers or

pods hosting only 6G components. To appropriately distribute this embodied power among virtual

components, we leverage metrics from cAdvisor21, which provides resource (CPU, memory, network, etc.)

utilization for containers. The mapping of the “embodied” power consumption is shown in Figure 5-9. The

kernel-level metrics are divided, manually, into categories based on affinity. Then, each category is

proportional ascribed to the appropriate virtual components. Regarding Kubernetes containers, that are

expected to be the main form under which a 6G network will be deployed, we exploit the cAdvisor metrics:

the purple, light blue and orange categories are mapped proportionally to the CPU, network, and memory

consumption, respectively. While for VMs and Docker containers, supposing their resource utilization are not

available, the mapping is uniform among all the instances. Finally, the monitoring category is isolated since

it includes all the processes, not containerized, that are needed for monitoring purposes.

5.3.1 Energy Consumption Measurements Based on Kubernetes, Scaphandre and Kepler

To demonstrate our approach, we deployed a containerized Iperf application in a 2-node Kubernetes cluster.

The setup consisted of one master node (4 CPUs, 264 GB RAM) and one worker node (2 CPUs, 96 GB RAM),

both equipped with Mellanox MT27500 NICs. On both servers, monitoring applications are deployed. The

tests consist of one couple of Iperf3 server and client deployed as K8s containers: one in each K8s node in order

to generate inter-node traffic. UDP traffic is generated while the bitrate of Iperf3 is changed from 1 Gigabit/s to

1Mbit/s. Each generation lasts 15 minutes and is followed by a 5-minute pause. The monitoring applications

mentioned before export the metrics on to a Prometheus22 database with a 10 second scraping interval.

Figure 5-10 shows the power consumption of the hosts and the Iperf containers. The green plot represents

the power consumption of the whole server (i.e., including every component) measured by the Raritan power

outlet (the IX7™ PDU Controller in detail). The orange plot represents the power consumption of the whole

server measured by Intel RAPL. The yellow plot shows the power consumption of the Iperf containers (i.e.,

the server and the client in Figure 5-10), the grey plot represents the power consumption of the Iperf

containers produced by the MDAF; finally, the blue plot represents the different bit rates which the test used.

19 https://hubblo-org.github.io/scaphandre-documentation/
20 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/running-average-power-limit-energy-reporting.html
21 https://github.com/google/cadvisor
22 https://prometheus.io/

https://hubblo-org.github.io/scaphandre-documentation/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://github.com/google/cadvisor
https://prometheus.io/

101096925 – 6Green – HORIZON-JU-SNS-2022 126 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-9: Categorization and mapping of the kernel level metrics.

First, let us focus on the server-level results: in both figures the Raritan power consumption is higher than

the RAPL one; this is to be expected since the RAPL component only measures the power consumption of the

CPU, while the Raritan one considers every component including the power supply. Then, considering the

grey and yellow plots, it is worth noticing that, as expected, the container power consumption plots have

lower values with respect to the other two.

Additionally, a comparison between the proposed solution (i.e., MDAF) and the Scaphandre solution is needed.

In Figure 5-10 we can notice that Scaphandre underestimates the container power consumption since it

considers only the container direct usage of the CPU. While our proposed MDAF takes into account the

“embodied” power consumption due to all the kernel processes needed to keep the whole system

(virtualization platforms included) up and running. Moreover, as shown in Figure 5-10, both the server and the

client power consumption (i.e., yellow and grey plots) decrease with the Iperf Bitrate. This is more visible in the

server than in the client. The former processes receiving packets when an interrupt is launched and then sends

back reply packets. While the latter simply generates only the first packet and then sends it according to the

decreasing bitrate. Finally, comparing the two sides of Figure 5-10 (i.e., the Iperf server and client), it can be

noticed from the yellow and grey plots that the client consumes much less power than the server.

101096925 – 6Green – HORIZON-JU-SNS-2022 127 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-10: Power consumption of both the host (left) measured by the Raritan and RAPL and of the Iperf server/ client
(right) measured by Scaphandre and the MDAF while the Iperf bitrate varies from 1 Gigabit/s to 1 Mbit/s.

Furthermore, to point out more easily the differences between the MDAF and Scaphandre plots, Table 10 is

inserted. It shows the difference in % (in terms of mean value and standard deviation) between the MDAF

and the Scaphandre container power consumption for the Iperf server and client respectively. First, analyzing

the server columns of Table 10, we can notice that the difference between MDAF and Scaphandre increases

when the Iperf bitrate decreases. Therefore, as the throughput decreases, the operations per packet the

server carries out increase. This occurs because when the incoming traffic volume is low, an interrupt is

launched every one or very few packets; while, when the incoming traffic volume is high, an interrupt is

launched every several packets. Then, comparing the server and client columns, it can be noticed that, on

the one hand, the mean value of the difference in the client case is almost constant, while this is not true for

the server; on the other hand, the standard deviations are much lower in the client (and almost constant)

case compared to the server case. This shows a much higher variability in the server rather than the client.

This can be explained with the tasks that each does. The server’s variability is much higher because its tasks

(processing packets and sending replies) depend on external triggers (interrupts caused by incoming

packets). While the client consists in a software that generates and sends packets; therefore, the operating

system scheduler (rather than an external trigger) is in charge of reserving the CPU for the Iperf software.

This results in less variability in the client.

Table 10: Mean value and standard deviation of the difference in % between the MDAF and the Scaphandre container
power consumption for the Iperf server and client respectively.

Iperf Bitrate
Mean value

(server)
Std (server)

Mean value

(client)
Std (client)

1 Gbit/s 19.6% 2.01% 4.35% 1.35%

100 Mbit/s 43.4% 4.31% 3.86% 1.34%

10 Mbit/s 52.0% 7.40% 4.06% 0.88%

1 Mbit/s 56.7% 8.40% 3.92% 1.08%

Following, we provide results regarding the mapping of consumption of hardware components to cloud

resources (Kubernetes setup).

101096925 – 6Green – HORIZON-JU-SNS-2022 128 of 158

D2.3 – The 6Green Enabling Technologies

Energy measurement tool comparison between Scaphandre and Kepler

Having deployed a Kubernetes single node cluster on bare metal, we have installed Kepler and Scaphandre

together in order to perform a comparison between both tools. We have used Prometheus to scrape both

tools’ metrics every 10s and configured Grafana in order to create a visual dashboard where it could be seen,

in several visualizations, the details of the different metrics. One of the main differences between Kepler and

Scaphandre is that Scaphandre gives most of its energy metrics in Gauge type and in terms of Power(W),

while Kepler in Counter type and in terms of energy(J). So, when comparing one to the other we need to

convert the energy metric to power using Promql’s rate operator. In all the figures we have Scaphandre on

the left and Kepler on the right. First of all, we have the node power consumption in Watts (Figure 5-11).

Figure 5-11: Node power consumption.

Then, host power vs aggregation of processes (Figure 5-12). This represents the previous metric compared

directly with the sum by node of the containers’ metrics.

Figure 5-12: Host power vs Aggregation of processes/containers.

In Figure 5-13, Figure 5-14 and Figure 5-15 we can see directly the metrics of the containers of the host in

different types of visualizations: Time series, table and state timeline.

Figure 5-13: Containers.

101096925 – 6Green – HORIZON-JU-SNS-2022 129 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-14: Containers (table).

Figure 5-15: Containers (state timeline).

Lastly, in Figure 5-16 we have the metrics aggregated by pod.

Figure 5-16: Pods.

In Figure 5-17, we can see the results of a test that we performed. The test consists in horizontally scaling a

pod that request 0.5 Cores. We trigger the scaling every 3 minutes. The results are in our opinion quite

normal, although interesting. We can see that, up to a certain point, scaling horizontally causes the

consumption/container to decrease (even though the total consumption goes up). However, when certain

load is reached, the addition of more replicas causes the total consumption to grow exponentially and the

share per container to increase.

101096925 – 6Green – HORIZON-JU-SNS-2022 130 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-17: Horizontal pod scaling test.

Kubernetes Consumption Measurement Using Scaphandre

Using Grafana, we created a dashboard to visually analyse the consumption of a Kubernetes cluster broken

down into the different resources that such cluster might have, such as: Containers, Pods, Deployments,

Replicasets, DaemonSets and Namespaces (Figure 5-18).

Figure 5-18: Scaphandre dashboard.

101096925 – 6Green – HORIZON-JU-SNS-2022 131 of 158

D2.3 – The 6Green Enabling Technologies

OpenShift Consumption Measurement Using Kepler

Production setups are usually based on hardened Kubernetes distributions such as Red Hat’s OpenShift

Container Platform, which also supports seamless integration with Kepler, as shown in Figure 5-19.

Figure 5-19: OCP observability dashboard with Kepler integrated.

The “Power Monitoring / Overview” dashboard page shows the system information (e.g., CPU architecture,

number of nodes in the cluster), system-level energy consumption, as well as the top 10 energy consuming

namespaces. On the other hand, the “Power Monitoring / Namespace” dashboard page shows the

namespace- and pod-level power and energy consumptions.

Consumption Based on OpenShift and Keppler

A single node Openshift (SNO) has been set up with Kepler on bare metal and has been evaluated with DPDK

l3fwd application, as shown in Figure 5-20. The l3fwd namespace includes 2 pods, each mapped to a NUMA

node and NIC. DPDK Pktgen is running on a separate server, able to generate up to 100 Gbps (i.e., 4 x 25

Gbps) to the l3fwd app. A scaled down 24-hour traffic profile, as shown in Figure 5-21, is used as basis for the

input traffic, which is load balanced across the 4 links.

Figure 5-20: DPDK l3fwd app running on single node OpenShift with Kepler integrated.

101096925 – 6Green – HORIZON-JU-SNS-2022 132 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-21: Traffic profile generated with Pktgen.

Figure 5-22 and Figure 5-23 show the “Power Monitoring / Overview” and “Power Monitoring / Namespace”

dashboard pages, respectively. In the latter, pod level power consumptions for CPU, RAM, GPU (if available)

and Other are available in addition to namespace-level power and energy consumptions.

It is important to note that polling applications like DPDK-based applications are observed to always remain

in 100% CPU usage despite the actual load. Sleep states are also interrupted by the polling, even when there

is no load. In this respect, solutions such as the Intel® Infrastructure Power Manager look into frequency

scaling for such cases. The technology has been already used by commercial 5G Core vendors together with

DPDK-based UPFs to boost 5G data plane performance, while saving power.

Figure 5-22: “Power monitoring / Overview” dashboard page.

101096925 – 6Green – HORIZON-JU-SNS-2022 133 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-23: “Power monitoring / Namespace” dashboard page.

5.3.2 Measurements Based on the Rating Operator

The rating rules of Rating Operator can be used to model energetic affinities between services and their

destination hardware. Furthermore, it empowers users to define transformation rules, enabling them to

convert compute resource metrics into KPIs representing energy consumption or carbon footprint. Figure

5-24 illustrates the monitoring of CPU and RAM consumption within a specific namespace of Rating Operator.

It also shows the monitoring of carbon footprint at different infrastructure locations or architecture levels,

which are transformed from energy consumption using rating rules of Rating Operator.

Align I/O operations to the applied power management schemes and obtain useful energy-aware KPIs to

drive energy optimizations

I/O operations are considered from their service counterpart. Each service is then considered as an I/O

producer in the context of microservices execution. As telecommunication platforms slowly evolves towards

a native support of microservices based execution, this approach is considered both generic and future proof.

The Rating Operator proposes specific rating rules to enable the mapping of resources volumes usage.

For each service, several metrics are tracked, including network bandwidth. Within the rules, queries

101096925 – 6Green – HORIZON-JU-SNS-2022 134 of 158

D2.3 – The 6Green Enabling Technologies

enable the metrics collection, while values are set to enable their transformation towards higher level

KPIs (as in metrics x values).

Rating rules enable a mix of metrics to be considered, for example energy metrics obtained from physical

devices or logical probes can be related to specific services, or specific resources. The level of precision can

be set by the user, either considering a namespace (equivalent of a tenant in the Kubernetes definition) made

of services, or a label that can be attached to one or more services.

Figure 5-24: CPU/RAM usage and carbon footprint monitoring.

5.4 Network Observability and Consumption of Network Equipment

The historical calculation of energy efficiency encompasses the entire network, with all its elements, which

includes both legacy cellular technologies and the radio access and core networks, along with data centers

(Figure 5-25). It is determined by measuring the amount of electrical energy consumed per unit of

transmitted data within a specific time frame, expressed either as Joules per bit or bits per Joule [33], [34].

Figure 5-25: Energy consumption breakdown by network element, 2025 [35].

101096925 – 6Green – HORIZON-JU-SNS-2022 135 of 158

D2.3 – The 6Green Enabling Technologies

As regards the most expensive segment in terms of energy, the Radio Access one, the network monitoring

activities are oriented to allow the four categories of most effective approaches for increasing the energy

efficiency23, nominally [36]:

 Resource allocation: The primary objective is to enhance the energy efficiency by optimally

distributing the system's radio resources to minimize power consumption instead of prioritizing

throughput. Numerous studies have demonstrated that adopting this approach can result in

significant improvements in energy efficiency, albeit with a minor decrease in throughput.

 Network planning and deployment: The second approach involves strategically placing infrastructure

nodes to achieve maximum coverage using minimal energy consumption, instead of just optimizing the

covered areas. Furthermore, implementing radio devices switch-on/switch-off algorithms and antenna

muting techniques allows to further optimize energy usage by adjusting to traffic conditions [37].

 Energy harvesting and transfer: The third method involves harvesting energy from the environment

to power communication systems [19].

 Hardware solutions: The aim of this approach is to develop radio communication systems' hardware

with a specific focus on energy consumption optimization and implementing significant architectural

modifications [38].

In this context, also pushed by the advanced Machine Learning techniques capabilities that are being applied

more and more frequently, network monitoring has reached a very fine and granular level (Figure 5-26).

Figure 5-26: ML energy consume prediction.

Among the most important monitored features it is important to mention:

 Radio Resource Control (RRC) Connection Types: Emergency, High Priority Access, Mobile

Terminating/Originating Access, Data, Voice Call, and Signalling

 Timing Parameters: MAC SDU data reception timing, transmission intervals, buffer management

 Latency Measurements: Multiple transmission buffer-related latency metrics

 Volume Metrics: Downlink/uplink data radio bearer volumes, signalling radio bearer bits

 Filtered Subclasses: Lower/Higher volume filtering categories

23 Please note that also if the desire is to achieve energy savings without impacting performances, the technology may
provide inherent flexibility to the operators in order to set the best balance between energy efficiency and
performances when it is deemed appropriate and justified.

101096925 – 6Green – HORIZON-JU-SNS-2022 136 of 158

D2.3 – The 6Green Enabling Technologies

Metro, Edge and Core Network Energy Optimization

Energy saving is approached at three hierarchical levels:

Network Level

 Flexible collaboration between domains and technologies (5G-LTE spectrum optimization)

 Comprehensive intelligent power management

 Data movement minimization through hierarchical caching

 Smart utilization of key 5G features: small cell networks, massive MIMO, device-to-device

communications

Site Level

 Renewable energy sources (solar power costs decreased 80% over the last decade)

 Smart lithium batteries

 Cabinet reduction and liquid cooling to minimize air conditioning requirements

Equipment Level

 High-efficient hardware implementation

 Automatic activation/deactivation with shut-down options

 AI/ML and predictive analytics for power efficiency optimization

Power Consumption Models

Specialized literature emphasizes the importance of including precise 5GC deployment software architecture

information in network observability, as virtualization technology significantly impacts power consumption

patterns.

Refined power models [39] separate contributions from each active domain:

Total Power Model:

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + ∑ 𝑃𝑑𝑜𝑚𝑎𝑖𝑛(𝑘)

𝑁

𝐾=1

Where Pdomain(k) is the power consumed by an active domain k, and N is the number of domains, and each

domain factor can be referred to a multi-dimensional linear weighted power model:

𝑃𝑑𝑜𝑚𝑎𝑖𝑛 = 𝑐0 + 𝑐1𝑃𝐶𝑃𝑈 + 𝑐2𝑃𝑐𝑎𝑐ℎ𝑒+𝑐3𝑃𝐷𝑅𝐴𝑀+𝑐4𝑃𝑑𝑖𝑠𝑘 + ⋯

The different contributions are characterized starting from careful testing campaigns (e.g., Figure 5-27 [39])

and further indicate the required quantities that need to be constantly observed and collected.

101096925 – 6Green – HORIZON-JU-SNS-2022 137 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-27: Power vs threads, CPU frequency and Memory [39].

5.4.1 Power Consumption Monitoring on Cloud-Native 5GS

To validate power consumption monitoring concepts in cloud-native 5G environments, we built a proof of

concept in 5G/6G testbed (Figure 5-28). We extended cloud-native 5G systems, featuring zero-touch

provisioning and end-to-end slicing, with a power measurement toolset. We deployed Netio for power outlet

level measurements, embedded RRU and IaaS tools for RRU input/output and CPU power metering, and the

Scaphandre tool for process-level metering to measure the consumption of BBU, 5G CN, and application

components. The qMON test automation tool was utilized to control and predict user traffic patterns and to

evaluate cloud-native system power consumption under real traffic load.

Figure 5-28: 5G/6G Pilot Environment.

The deployed power measurement toolset enables active measurement of the 5G system's power

consumption from an end-to-end perspective. This includes 5G UE, RRU, BBU, 5G CN, and application

components, providing full visibility of all factors — both hardware and software — that impact the total

power consumption of the mobile environment (Figure 5-29).

101096925 – 6Green – HORIZON-JU-SNS-2022 138 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-29: Measuring power consumption taking into consideration end-to-end perspective.

To verify the proposed power metering approach, we have deployed 5G system on an x86 NFVI environment,

which allows us to run 5G NR (virtual BBU) and 5G core network functions on a single Kubernetes instance.

This supports container-based deployment of network functions and MANO-compliant orchestration. We

deployed 5GCN (virtual core network) and 5G NR (virtual BBU) as network functions (NF) and corresponding

network services (NS) using Kubernetes deployment principles. With virtual network function descriptors

(VNFD) and network service descriptors (NSD), we can easily reconfigure key 5G NR and Core network

parameters, such as used RRU band and bandwidth, power per radio port on RRU, MIMO Level, TDD mode,

slicing configuration, user bandwidth profile, and user traffic patterns.

We have conducted a series of tests to verify the prepared environment. In the first test, we aimed to observe

the difference between an idle and an active user — where the user is not generating any traffic (UE in idle

mode) and RAN is also in idle mode or when the user is fully utilizing available 5G RAN resources (UE in active

mode). We prepared a test methodology where we generated TCP-based DL traffic for a duration of 2

minutes, followed by an idle time of 1 minute. This testing was repeated in cycles. Figure 5-30 provides an

indicative view on relations and dynamics of power consumption at different components while testing with

before described (cyclic) network load. Based on the observed results, we can conclude:

 During the active test cycle, when the 5G UE is generating traffic, power consumption increases significantly.

 Even when the user is idle, the 5G system and 5G UE consume significant power. This includes power usage

in hardware standby mode (RRU, IaaS server), 5G NR and 5GCN standby mode (BBU, AMF, SMF), and

application standby mode.

 If user traffic follows a deterministic pattern, then power consumption (RRU, 5G CN, Iperf Server) also

exhibits a deterministic pattern.

101096925 – 6Green – HORIZON-JU-SNS-2022 139 of 158

D2.3 – The 6Green Enabling Technologies

Figure 5-30: Measuring the power consumption of the 5G system, breaking down the hardware and software
components (and indicative view on relations and dynamics of power consumption at different

components while testing with cyclic network load).

101096925 – 6Green – HORIZON-JU-SNS-2022 140 of 158

D2.3 – The 6Green Enabling Technologies

 Adoption of Enabling Technologies in the 6Green Service-based
Architecture

In the current section, we shortly refer to the adoption of the aforementioned technologies towards the

development of the 6Green Service-based Architecture (SBA), as shown in Figure 6-1.

Figure 6-1: The 6Green SBA framework.

Following, in Table 11 we highlight the set of main technologies that are adopted towards the development of

each of the components of the 6Green SBA, while a short description for such an adoption is provided in Table 12.

Table 11: Mapping among the Enabling technologies and the components of the SBA.

Enabling Technology

M
D

A
F

N
W

D
A

F

N
SD

A
F

P
C

F/

N
SP

C
F

N
EF

A
F

B
SS

F

EN
IF

/

N
SE

N
IF

EG
M

F/

N
SM

F/
N

F

M
F

Ed
ge

M
F

C
C

M
F

Traffic Offloading X X

Connectivity (Wide-Area
Infrastructure Manager)

 X X

Infrastructure as a Code
(MetalCL)

 X X X

ZeroOps and Automation in Infra-
structure Management (NFVCL)

 X X

101096925 – 6Green – HORIZON-JU-SNS-2022 141 of 158

D2.3 – The 6Green Enabling Technologies

Enabling Technology

M
D

A
F

N
W

D
A

F

N
SD

A
F

P
C

F/

N
SP

C
F

N
EF

A
F

B
SS

F

EN
IF

/

N
SE

N
IF

EG
M

F/

N
SM

F/
N

F

M
F

Ed
ge

M
F

C
C

M
F

FaaS programming model X

RAN power management X X

Optimal deployment of
network slices

 X X X

Data Fusion and Profiling X X X X X

Network observability X X X X X

Dynamic QoS management X X X X

Table 12: Short description for the adoption of Enabling technologies per component of the SBA.

SBA Component Main usage of enabling technologies

MDAF The main enabling technology adopted by the MDAF is the Data Fusion and

Profiling one which is exploited to generate more complex data (e.g.,

forecasting the power consumption of cloud native components).

NWDAF The NWDAF adopts two main enabling technologies: Data Fusion and Profiling

and Network Observability. The former is exploited to generate more complex

data by fusing the ones produced by the MDAF and those produced by the

other NFs (e.g., AMF, SMF, etc.). The latter is a crucial part of the NWDAF since

this is the NF devoted to spreading observability information from the sources

(i.e., MDAF, AMF, SMF, etc.) to all the other NFs that request them.

NSDAF The NSDAF enables the network slice analysis in the context of the 6G

architectures, for optimal energy resources consumption, applied in the cloud

native environment. The envisioned SBA integration of the NSDAF component

together with NWDAF (seen as functional sub-component of the NF) will

interact with the other NFs for green infrastructure and services

implementation, with support of 6Green orchestration and automation tools.

PCF/ NSPCF PCF serves as a crucial enabling technology that manages network policies and

enforces rules for data traffic and Quality of Service (QoS). It dynamically

adjusts policies based on real-time network conditions and subscriber data,

ensuring efficient resource utilization and optimal service delivery.

NEF NEF facilitates secure and efficient exposure of network services and

capabilities to third-party applications (AF). It provides a standardized interface

for external applications to interact with the network, ensuring proper access

control, policy enforcement and enabling the traffic offloading mechanism.

101096925 – 6Green – HORIZON-JU-SNS-2022 142 of 158

D2.3 – The 6Green Enabling Technologies

SBA Component Main usage of enabling technologies

AF AF functionalities are provided by the Vertical Application Orchestrator which

is used for managing the deployment and real-time operations of vertical

applications, interfacing seamlessly with end users and network orchestration

systems. Thus, it decouples application layer management from network layer

management, providing an interface for users to manage applications and their

features, and handling the entire lifecycle of vertical applications. This includes

requesting cloud resources, configuring network slices, and implementing

Green Elasticity and Edge Agility based on workload demands. It also provides

capabilities to trigger network and slice configuration changes through Service-

Based Interface (SBIs) with the BSSF, dynamically configuring the network to

meet specific application needs in real-time. It operates infrastructure-

agnostically, utilizing a dynamic intent-based system for real-time intent

negotiation and reconfiguration, optimizing resource usage and network

performance with Energy-aware Backpressure information flows.

BSSF Intent management facilitates a ZeroOps and automated network

management by abstracting underlying configurations from verticals. The BSSF

acts as an aggregator of slice requests, enabling the upper layers to automate

processes more reliably. It also allows for profiling in intent management based

on policies assigned to specific vertical types. As a consequence of requesting

a slice, network monitoring is also present in BSSF.

ENIF / NSENIF One of the main enabling technologies adopted in ENIF/NSENIF regard the

mechanisms that support optimal deployment and lifecycle management of a

network slice, considering resources in the RAN, transport and core network

part, as well as deployment in serverless and non-serverless environments.

Intent lifecycle management is supported from the specification of the intent

towards its validation and its monitoring during the lifetime of a service

deployment and operation. Dynamic policies management is applied to satisfy

the requested intent. Data fusion and profiling mechanisms are used to

continuously monitor various performance metrics over the infrastructure,

analyzed data and proceed to decision making. ZeroOps, automation and

infrastructure as a code principles are exploited to increase automation and

distributed intelligence of the provided services by ENIF/NSENIF.

EGMF / NSMF / NFMF NSMF deploys an end-to-end NSI for each network connectivity demand

expressed by AFs. To do this, NSMF consumes the management services of

other 6Green NFs using SBA. For example, NSMF consumes NFMF services to

configure the deployed VNFs/CNFs by NFVO to establish a new NSI or alter an

existing one. To protect the management services from unauthorized AFs,

EGMF, another 6Green NF, is responsible for securely exposing the

management services. Finally, whenever a green decision regarding modifying

an NSI is made, NSMF, as an actuator, is in charge of applying that decision in

the 6Green SBA.

101096925 – 6Green – HORIZON-JU-SNS-2022 143 of 158

D2.3 – The 6Green Enabling Technologies

SBA Component Main usage of enabling technologies

EdgeMF EdgeMF allows the SBA to provide computing resources at the edge to vertical

applications, enabling Edge Agility and Green Elasticity mechanisms. It achieves

this by managing Edge Data Networks (EDN) objects that provide data and

compute services in a specific edge zone, as well as by managing the compute

resources that are made up of one or more EDNs. For this purpose, EdgeMF will

leverage the services of the VAO and the NSMF, and will require services from

the CCMF and the MetalCL infrastructure component.

CCMF The CCMF enables the SBA to maintain a repository of computing resources to

be used to deploy vertical applications, e.g., from Kubernetes clusters.

101096925 – 6Green – HORIZON-JU-SNS-2022 144 of 158

D2.3 – The 6Green Enabling Technologies

 Conclusions

In accordance with the objectives of WP2, in this deliverable we have listed a set of enabling technologies

that are developed in the 6Green Project and are adopted for the development of the 6Green Service-based

Architecture (SBA).

A wide range of enabling technologies are detailed, including network connectivity management and traffic

offloading mechanisms; cloud-native orchestration mechanisms considering approaches that take advantage

of service-mesh techniques, as well as automation mechanisms based on infrastructure as a code, ZeroOps

and continuous automation principles; power management mechanisms for the core, transport and access

part of the continuum by considering serverless workloads; network slice lifecycle management and

optimization techniques, including energy-aware network slice management in O-RAN and multi-provider

settings; and green observability and profiling mechanisms.

Upon the description of the development of the set of enabling technologies, a mapping among the detailed

technologies and the components of the 6Green SBA is provided. This mapping is aligned with the

development of software prototypes for the enabling technologies as detailed in D2.4, as well as with the

development of the 6Green SBA, as detailed in D3.3 and D3.4.

101096925 – 6Green – HORIZON-JU-SNS-2022 145 of 158

D2.3 – The 6Green Enabling Technologies

References

[1] 3GPP, “5G Network Resource Model (NRM)”, 3GPP TS 28541 V17111, 2024.

[2] A. Farrel et al., “A Framework for Network Slices in Networks Built from IETF Technologies”, n. 9543. en

Request for Comments, [Online]. Available at: https://www.rfc-editor.org/info/rfc9543

[3] B. Wu, D. Dhody, R. Rokui, T. Saad, y J. Mullooly, “A YANG Data Model for the RFC 9543 Network Slice

Service”, Internet Engineering Task Force, Internet-Draft draft-ietf-teas-ietf-network-slice-nbi-yang-10,

Mar. 2024, [Online].

Available at: https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slice-nbi-yang/10/

[4] «TeraFlowSDN | TeraFlow». Available at: https://www.tfs.etsi.org//

[5] 6Green D4.1, https://www.6green.eu/

[6] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1),

269–271

[7] D. de la Osa Mostazo, P. Armingol Robles, Ó. G. de Dios, and J. Pedro Fernández-Palacios Giménez,

‘Lessons learned from IP routers power measurements and characterization’, in 2024 15th International

Conference on Network of the Future (NoF), Oct. 2024, pp. 245–253. doi:

10.1109/NoF62948.2024.10741444.

[8] R. Bolla, R. Bruschi, A. Gallo, C. Lombardo and N. S. Martinelli, "To Scale or Not to Scale? Understand the

Overhead of Container Scaling Operations," 2025 21st International Conference on Distributed

Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Lucca, Italy, 2025, pp. 890-894, doi:

10.1109/DCOSS-IoT65416.2025.00135. https://ieeexplore.ieee.org/document/11096301

[9] Intel, “Preboot Execution Environment (PXE) Specification”, V2.1, 1999, [Online].

Available: https://web.archive.org/web/20131102003141/http://download.intel.com/design/archives/

wfm/downloads/pxespec.pdf

[10] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. Abad, and A. Iosup, “The

State of Serverless Applications: Collection, Characterization, and Community Consensus”,

IEEE Transactions on Software Engineering, 2021.

[11] S. Risco, C. Alarcón S. Langarita, M. Caballer, and G. Moltó, “Rescheduling serverless workloads across

the cloud-to-edge continuum”, Future Generation Computer Systems, vol. 153, pp. 457–466, Apr. 2024.

[12] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi, and S. Chaterji, “Wisefuse’: Workload

Characterization and DAG Transformation for Serverless Workflows”, in Proceedings of the ACM on

Measurement and Analysis of Computing Systems, vol. 6. Association for Computing Machinery, 2022,

pp. 1–28, issue: 2.

[13] Z. Xu, L. Zhou, W. Liang, Q. Xia, W. Xu, W. Ren, H. Ren, and P. Zhou, “Stateful Serverless Application Placement

in MEC with Function and State Dependencies”, IEEE Transactions on Computers, pp. 1-14, 2023.

[14] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. Richard Yu, and T. Huang, “When Serverless Computing Meets Edge

Computing: Architecture, Challenges, and Open Issues”, IEEE Wireless Communications, pp. 1–8, 2021.

[15] C. Cicconetti, M. Conti, and A. Passarella, “FaaS execution models for edge applications”, Pervasive and

Mobile Computing, vol. 86, 2022.

https://www.rfc-editor.org/info/rfc9543
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slice-nbi-yang/10/
https://www.tfs.etsi.org/
https://www.6green.eu/
https://doi.org/10.1109/NoF62948.2024.10741444
https://ieeexplore.ieee.org/document/11096301
https://web.archive.org/web/20131102003141/http:/download.intel.com/design/archives/wfm/downloads/pxespec.pdf
https://web.archive.org/web/20131102003141/http:/download.intel.com/design/archives/wfm/downloads/pxespec.pdf

101096925 – 6Green – HORIZON-JU-SNS-2022 146 of 158

D2.3 – The 6Green Enabling Technologies

[16] D. Schafer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker, “Tasklets: ‘Better than Best-Effort’

Computing”, in 2016 25th International Conference on Computer Communication and Networks

(ICCCN). Waikoloa, HI, USA: IEEE, Aug. 2016, pp. 1-11.

[17] C. Cicconetti, M. Conti, and A. Passarella, “A Decentralized Framework for Serverless Edge Computing in

the Internet of Things”, IEEE Trans. on Network and Service Management, pp. 1–1, 2020.

[18] H. Tian, Y. Zheng, and W.Wang, “Characterizing and Synthesizing Task Dependencies of Data-Parallel

Jobs in Alibaba Cloud”, ACM SoCC, pp. 139-151, 2019.

[19] Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. “Energy harvesting wireless

communications: A review of recent advances”, IEEE J. Sel. Areas Commun. 2015, 33, 360-380, [Online].

 Available: https://ieeexplore.ieee.org/document/7010878

[20] Esmaeil Amiri, Ning Wang, Mohammad Shojafar, Mutasem Q. Hamdan, Chuan Heng Foh, and Rahim

Tafazolli, “Deep Reinforcement Learning for Robust VNF Reconfigurations in O-RAN”, IEEE Trans. on

Netw. and Serv. Manag. 21, 1 (Feb. 2024), 1115-1128.

[21] N. Sen and A. F. A, “Towards Energy Efficient Functional Split and Baseband Function Placement for 5G

RAN”, 2023 IEEE 9th International Conference on Network Softwarization (NetSoft), Madrid, Spain,

2023, pp. 237-241.

[22] Y. Shi, Y. E. Sagduyu and T. Erpek, “Reinforcement Learning for Dynamic Resource Optimization in 5G

Radio Access Network Slicing”, 2020 IEEE 25th International Workshop on Computer Aided Modeling

and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 2020, pp. 1-6.

[23] N. Sen and A. F. A, “Intelligent Admission and Placement of O-RAN Slices Using Deep Reinforcement

Learning”, 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy,

2022, pp. 307-311.

[24] N. Fryganiotis, E. Stai, I. Dimolitsas, A. Zafeiropoulos, S. Papavassiliou “Dynamic, Reconfigurable and

Green Network Slice Admission Control and Resource Allocation in the O-RAN Using Model Predictive

Control”, IFIP Networking, Thessaloniki, Greece, June 2024.

[25] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer and C. Mas-Machuca, “Holu: Power-Aware and

Delay-Constrained VNF Placement and Chaining”, in IEEE Transactions on Network and Service

Management, vol. 18, no. 2, pp. 1524-1539, June 2021.

[26] Watters, Lawrence J. “Reduction of Integer Polynomial Programming Problems to Zero-One Linear

Programming Problems”, Operations Research 15, no. 6 (1967):1171-74, [Online].

Available: http://www.jstor.org/stable/168623.

[27] A. Zafeiropoulos, N. Fryganiotis, P. Maratos, C. Vassilakis, E. Stai, and S. Papavassiliou, “Leveraging

knowledge graphs for intent lifecycle management in the computing continuum,” in 2025 IEEE Global

Communications Conference, 2025.

[28] Tzanettis I, Androna C-M, Zafeiropoulos A, Fotopoulou E, Papavassiliou S., “Data Fusion of Observability

Signals for Assisting Orchestration of Distributed Applications”, Sensors, 2022, 22(5):2061, [Online].

Available: https://doi.org/10.3390/s22052061

[29] Etienne-Victor Depasquale, Franco Davoli and Humaira Rajput “Dynamics of Research into Modeling the

Power Consumption of Virtual Entities Used in the Telco Cloud”, Sensors, 2023, 23(1):255, [Online].

Available: https://doi.org/10.3390/s23010255

https://ieeexplore.ieee.org/document/7010878
http://www.jstor.org/stable/168623
https://doi.org/10.3390/s22052061
https://doi.org/10.3390/s23010255

101096925 – 6Green – HORIZON-JU-SNS-2022 147 of 158

D2.3 – The 6Green Enabling Technologies

[30] Kuranage, Menuka; Hanser, Elisabeth; Nuaymi, Loutfi; Bouabdallah, Ahmed; Bertin, Philippe; Al-Dulaimi,

Anwer, “AI-assisted proactive scaling solution for CNFs deployed in Kubernetes”, 265-273.

doi: 10.1109/CloudNet59005.2023.10490067.

[31] Spatharakis, Dimitrios, et al. “Distributed resource autoscaling in kubernetes edge clusters”, 2022

18th International Conference on Network and Service Management (CNSM). IEEE, 2022.

[32] A. Zafeiropoulos et al., “Benchmarking and Profiling 5G Verticals' Applications: An Industrial IoT Use

Cas”, 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 2020,

pp. 310-318, doi: 10.1109/NetSoft48620.2020.9165393.

[33] Humar, I.; Ge, X.; Xiang, L.; Jo, M.; Chen, M.; Zhang, J. “Rethinking energy efficiency models of cellular

networks with embodied energy”, IEEE Netw. 2011, 25, 40-49 [Online].

Available: https://ieeexplore.ieee.org/document/5730527

[34] Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. “What Will 5G Be?”,

IEEE J. Sel. Areas Commun. 2014, 32, 1065-1082. [Online].

Available: https://ieeexplore.ieee.org/document/6824752

[35] Ioannis P. Chochliouros, Michail-Alexandros Kourtis, Anastasia S. Spiliopoulou, Pavlos Lazaridis, Zaharias

Zaharis, Charilaos Zarakovitis and Anastasios Kourtis, “Energy Efficiency Concerns and Trends in Future

5G Network Infrastructures”, Energies, 2021, 14(17):5392, [Online].

Available: https://doi.org/10.3390/en14175392

[36] Zappone, A.; Jorswieck, E. “Energy efficiency in wireless networks via fractional programming theory”,

Found. Trends Commun. Inf. Theory 2015, 11, 185-396, [Online].

Available: https://www.nowpublishers.com/article/Details/CIT-088

[37] Oh, E.; Son, K.; Krishnamachari, B. “Dynamic base station switching-on/off strategies for green cellular

networks”, IEEE Trans. Wirel. Commun. 2013, 12, 2126-2136. [Online].

Available: https://ieeexplore.ieee.org/document/6489498

[38] Han, C.; Harrold, T.; Armour, S.; Krikidis, I.; Videv, S.; Grant, P.M.; Haas, H.; Thompson, J.S.; Ku, I.; Wang,

C.X.; et al. “Green radio: Radio techniques to enable energy-efficient wireless networks”, IEEE Commun.

May 2011, 49, 46-54, [Online]. Available: https://ieeexplore.ieee.org/document/5783984

[39] Qingwen Chen, Paola Grosso, Karel van der Veldt, Cees de Laat, Rutger Hofman, Henri Bal, “Profiling

energy consumption of VMs for green cloud computing”, 2011 IEEE Ninth International Conference on

Dependable, Autonomic and Secure Computing, Sydney, NSW, Australia, 2-14 December 2011, IEEE,

doi: 10.1109/DASC.2011.131

https://ieeexplore.ieee.org/document/5730527
https://ieeexplore.ieee.org/document/6824752
https://doi.org/10.3390/en14175392
https://www.nowpublishers.com/article/Details/CIT-088
https://ieeexplore.ieee.org/document/6489498
https://ieeexplore.ieee.org/document/5783984

Annex A: Blueprint Deployment and Lifecycle Management Workflows

Figure A-1: Operations required to create a core with the UPF provisioned in a VM.

101096925 – 6Green – HORIZON-JU-SNS-2022 149 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-2: Operations required to create a core with the UPF provisioned in a pod.

Figure A-3: Operations required to add a DNN.

Figure A-4: Operations required to add a slice with the UPF provisioned in a VM.

101096925 – 6Green – HORIZON-JU-SNS-2022 151 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-5: Operations required to add a slice with the UPF provisioned in a pod.

101096925 – 6Green – HORIZON-JU-SNS-2022 152 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-6: Operations required to add a TAC with the UPF provisioned in a VM.

101096925 – 6Green – HORIZON-JU-SNS-2022 153 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-7: Operations required to add a TAC with the UPF provisioned in a pod.

101096925 – 6Green – HORIZON-JU-SNS-2022 154 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-8: Operations required to add a UE.

Figure A-9: Operations required to delete a TAC with the UPF provisioned in a VM.

101096925 – 6Green – HORIZON-JU-SNS-2022 155 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-10: Operations required to delete a TAC with the UPF provisioned in a pod.

101096925 – 6Green – HORIZON-JU-SNS-2022 156 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-11: Operations required to delete a slice with the UPF provisioned in a VM.

101096925 – 6Green – HORIZON-JU-SNS-2022 157 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-12: Operations required to delete a slice with the UPF provisioned in a pod.

101096925 – 6Green – HORIZON-JU-SNS-2022 158 of 158

D2.3 – The 6Green Enabling Technologies

Figure A-13: Operations required to delete a core with the UPF provisioned in a VM.

Figure A-14: Operations required to delete a core with the UPF provisioned in a pod.

	Table of Contents
	List of Figures
	List of Tables
	Glossary of terms and abbreviations used
	Executive Summary
	1 Introduction
	2 Connectivity and Traffic Offloading
	2.1 Traffic Offloading to Hardware Acceleration-Based UPF by Control Plane Service Exposure
	2.1.1 Slice Offloading Mechanism within the 5GC
	2.1.2 Validation

	2.2 Connectivity Enablers in the Transport Network
	2.2.1 Architecture
	2.2.2 Validation

	3 Cloud Native Orchestration and Automated Network Infrastructure Management
	3.1 Deployment Aspects
	3.2 Service Mesh Technologies
	3.2.1 Overhead of Container Scaling Operations
	3.2.1.1 Setup
	3.2.1.2 Results Evaluation

	3.3 Infrastructure as a Code Mechanisms Based on the MetalCL
	3.3.1 Power Management Capabilities
	3.3.2 Results

	3.4 ZeroOps and Continuous Automation Based on the NFV Convergence Layer (NFVCL)
	3.4.1 The Network Ecosystem
	3.4.2 The NFVCL Architecture
	3.4.3 Blueprint Deployment and Lifecycle Management
	Results

	4 Network Slice Lifecycle and Power Management in Serverless Environments
	4.1 Stateful FaaS for Energy Consumption Minimisation
	4.1.1 Mathematical Modelling and Analysis
	4.1.2 Experimental Evaluation
	4.1.3 Conclusions

	4.2 Adaptive RAN Power Management in Serverless Environments
	4.2.1 Energy Use Patterns on the 5G HW
	4.2.2 Energy Use Patterns on the 5G SW
	4.2.3 Advanced Experimentation
	4.2.4 Main findings

	4.3 Energy-Aware Network Slice Management in O-RAN
	4.3.1 System Architecture and Modeling
	4.3.2 Slice Request Model
	4.3.3 Problem Formulation
	4.3.4 Proposed Solution via Model Predictive Control (MPC)
	4.3.5 Evaluation Results (MPC)
	4.3.6 Proposed Solution using Reinforcement Learning (RL)
	4.3.7 Evaluation Results (RL)

	4.4 Application Graph Deployment across Multiple Providers
	4.4.1 Theoretical Foundation
	4.4.2 Experimental Evaluation

	5 Green Observability and Profiling in the 5/6G Continuum
	5.1 Data Fusion Mechanisms
	5.2 Profiling Mechanisms
	5.2.1 The Rating Operator Tool
	5.2.2 Resource Profiling Related to Elasticity and Resource Efficiency

	5.3 Estimation of Energy Consumption of Hardware Components
	5.3.1 Energy Consumption Measurements Based on Kubernetes, Scaphandre and Kepler
	Kubernetes Consumption Measurement Using Scaphandre
	OpenShift Consumption Measurement Using Kepler
	Consumption Based on OpenShift and Keppler

	5.3.2 Measurements Based on the Rating Operator

	5.4 Network Observability and Consumption of Network Equipment
	5.4.1 Power Consumption Monitoring on Cloud-Native 5GS

	6 Adoption of Enabling Technologies in the 6Green Service-based Architecture
	7 Conclusions
	References
	Annex A: Blueprint Deployment and Lifecycle Management Workflows

