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Abstract—5G and beyond support the deployment of vertical
applications, which is particularly appealing in combination with
network slicing and edge computing to create a logically isolated
environment for executing customer services. Even if serverless
computing has gained significant interest as a cloud-native
technology its adoption at the edge is lagging, especially because
of the need to support stateful tasks, which are commonplace in,
e.g., cognitive services, but not fully amenable to being deployed
on limited and decentralized computing infrastructures. In this
work, we study the emerging paradigm of stateful Function
as a Service (FaaS) with lightweight task abstractions in We-
bAssembly. Specifically, we assess the implications of deploying
inter-dependent tasks with an internal state on edge computing
resources using a stateless vs. stateful approach and then derive
a mathematical model to estimate the energy consumption of a
workload with given characteristics, considering the power used
for both processing and communication. The model is used in
extensive simulations to determine the impact of key factors and
assess the energy trade-offs of stateless vs. stateful.

Index Terms—Stateful FaaS, Local Data Networks, Beyond 5G,
Vertical Applications, Serverless Computing

I. INTRODUCTION

Since long edge computing has outgrown the role of being
a surrogate of the cloud for offloading specific services it
was originally assigned (e.g., [1]). Nowadays, it is a thriving
reality with a transformative effect on business and society,
whose adoption is constantly spreading across more and more
domains [2], especially thanks to the opportunities offered
by cognitive Artificial Intelligence (AI) services at the edge,
which can benefit immensely from the data being consumed
close to where they are generated and from the use of
decentralized computing resources with embedded Graphics
Processing Units (GPUs)/Tensor Processing Units (TPUs) [3].

Indeed, edge computing is expected to remain a key player
in the future evolution of communication technologies [4]
and has attracted the interest of many standardization bodies,
including 3GPP. In particular, a reference architecture for
supporting edge computing within a cellular network is stan-
dardized in [5], enabling Edge Computing Service Providers
(ECSPs) to deploy EDNs, namely 5G network infrastructures
that contain edge servers (called EAS in 3GPP jargon) and
management entities, which can offer edge computing services
to end users. A typical deployment scenario for an EDN is
shown Figure 1, together with the interactions between the
5G transport functions and the edge computing entities. At
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Fig. 1. Simplified beyond 5G architecture of an Edge Data Network (EDN)
mobile users with Edge Application Server (EAS) services.

the bottom layer of this reference architecture, there is the
mobile network with Internet of Things (IoT) users, possibly
consisting of a network slice [6], that is a virtual network
dedicated to a customer in logical isolation, and providing
specific Service Level Agreements (SLAs), while sharing the
physical Radio Access Network (RAN) and 5G Core (5GC)
resources [7]. Virtual applications can be assigned by the
customer to a given EAS service area of the mobile network,
whose traffic is handled by one User Plane Function (UPF)
(there can be more than one, not shown in the figure) towards
a transport network until it reaches the EDN, at the top of the
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diagram. The EDN is a pool of computing, networking, and
storage resources contributing to the EAS.

From the point of view of software architectures, cloud-
native approaches based on micro-services and containers,
instead of monolithic applications, have become very pop-
ular, especially relying on serverless computing. The latter
enables full automation and flexible billing [8], building on a
functional programming model, called Function as a Service
(FaaS), which allows a developer to compose elementary
and reusable functions, whose instances are stateless and can
be shared among different users. Serverless computing has
been adopted successfully in many application domains in the
cloud [9], but it is not yet fully developed at the edge [10],
because of two main reasons. First, real applications often
require functions to maintain a state, of some kind, associated
with a given user or session. In the cloud, this is implemented
through storage services, which are readily available in data
centers, but incur much more overhead in a decentralized
edge computing environment. Second, efficient scheduling and
resource management are much more challenging at the edge
due to the scarcity of resources and the resulting contention
between concurrent applications, which hampers the promises
of full automation and infinite scalability of serverless com-
puting.

These observations lead to the following research questions:
Q1 Deploying stateful FaaS through stateless runners access-

ing the state on an external service is the state-of-the-
art deployment option. Is there an alternative solution to
obtain the benefits of edge computing and the flexibility
of FaaS, despite the need to maintain a state?

Q2 Improving the efficiency of Information and Commu-
nication Technologies (ICT) is one of the key goals
for global sustainable development [12]. What are the
implications of different deployment/run-time options to
support stateful FaaS on the energy consumption of the
EDN infrastructure?

We address both questions through the paper contributions:
A1 We consider an alternative paradigm that realizes stateful

FaaS (also known as “actor model” in the literature,
e.g., [11]) exploiting recent lightweight virtualization
technologies and allowing efficient multiplexing of many
instances of isolated user-space applications. This is ex-
plored in Section II below, where we provide a back-
ground on the deployment of inter-dependent stateful
tasks through stateless vs. stateful FaaS and report the
results obtained in a testbed with embedded edge nodes
on the execution of concurrent tasks in WebAssembly.

A2 We formulate in Section III a novel mathematical model
for the energy consumption of EDNs using the two
stateless vs. stateful FaaS approaches above, which is then
used to carry out a performance evaluation study under
realistic trace-inspired workload conditions and analyze
the impact on energy consumption of the main system
factors (Section IV).

The paper continues with a review of the relevant state-
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Fig. 2. Example of how to realize stateful processing with stateless FaaS.

of-the-art in Section V, and then comes to the summary in
Section VI.

II. STATELESS VS. STATEFUL FAAS:
BACKGROUND AND MOTIVATION

Serverless computing and the FaaS programming model are
popular in the cloud [9] and they have attracted significant
interest also at the edge [13]. As already mentioned in Sec-
tion I, with FaaS an application is made of a sequence of
stateless function calls, which can be arranged in chains (i.e.,
f1 → f2 → . . . → fN ) or more complex structures, like
Directed Acyclic Graphs (DAGs) [14]. However, realistic ap-
plications typically do need function execution to be associated
with some state, especially for edge applications, such as AI
and real-time analytics [15].

A straightforward solution to this problem, which we call
stateless FaaS, is to maintain the state on an external storage
system to be accessed on demand by the functions as part of
their execution, as explained, e.g., in [16]. Such a deployment
option is illustrated in the example in Figure 2, where function
f(·) requires input from two dependencies (1 and 2) and has
two outputs (3 and 4). When the function receives input 1,
it is kept temporarily in the state storage. Once input 2 is
received, full processing can occur combining the latter with
the previous input 1 and the state, to produce the final outputs
3 and 4, after updating the state on the storage.

In common serverless computing platforms, function invo-
cation happens through an HTTP command issued on a web
server running in a container. Due to the lack of state, the
same container can serve multiple users/sessions seamlessly,
and the orchestration platform can easily perform autoscaling
of such runners, i.e., decreasing or increasing the number of
instances per function to match the instantaneous demand.
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Fig. 4. Migration of a stateful FaaS runner from node A to node B.

An alternative to this strategy is dedicating each user/session
to a runner, thus realizing what we call stateful FaaS. As
illustrated in the example in Figure 3, with this model there
is no need to fetch/update the state or store temporary input
from previous function calls. In principle, the stateful FaaS
model has two inconveniences. First, the number of runners
may be much higher than that with stateless FaaS, because
the former cannot exploit statistical multiplexing of multiple
users/sessions like the latter. We study the practical impact
of this issue with a specific virtualization technology in
Section II-A. Second, if a runner is migrated from one node to
another for any reason, e.g., system resource optimization, its
internal state must be moved to the target host. We show an
example in Figure 4, where the orchestrator migrates a runner
for the function f(·) from node A to node B. First, when
stopping f(·) on node A the state is stored temporarily on an
external system, which is then queried by the new instance of
function f(·) on node B upon creation. With this solution,
there would be a period during which the task performed
by f(·) is not available. More sophisticated protocols can be
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Fig. 5. Deployment of a three-function chain (top) on two processing nodes
through stateless FaaS (middle) and stateful FaaS (bottom).

devised [17], but, in any case, they would incur additional
complexity or overhead, which is not needed with stateless
FaaS. The impact of state migration on energy consumption
is captured by the mathematical model defined in Section III
and evaluated in Section IV.

We now illustrate deployment with stateless vs. stateful
FaaS with the help of the example in Figure 5, with a three-
function chain application running on two nodes A and B.
In the example, we have one runner per function: node A
hosts functions f1 and f2 and node B hosts function f3. With
stateless FaaS, an intermediate layer is needed to dispatch
function invocations to one of the matching runners: this is
represented by a logical component called broker, borrowing
the terminology from [18], which is an early study on the
realization of distributed computing in pervasive systems. As
can be seen, network traffic is generated at each function
call for state access, on the state storage, and for invoking
the next runner through the broker. On the other hand, with
stateful FaaS, we need logical components to mesh together
the runners, which can be within a node or at a system level.



Network access for accessing the state is unnecessary because
the state is embedded within the runner. Furthermore, when a
runner invokes another on the same node no network access
is needed, too.

A. Stateful FaaS benchmarking

We now discuss the potential issue of stateful FaaS requiring
one runner per user/session, which can be substantially mit-
igated with lightweight abstractions. A candidate technology
for this is WebAssembly, which is new but whose adoption
is increasing very fast. With WebAssembly the runner is a
user-space application, whose isolation is provided by the run-
time environment at a small fraction of the cost of traditional
virtualization means, such as Docker containers [19].

In the remainder of this section, we report experimental
results obtained by running an application with four stateful
functions in a chain, as illustrated in Figure 6. The implemen-
tation was done with EDGELESS1, an open-source framework
to develop and orchestrate stateful FaaS applications in the
edge-cloud continuum, developed within a project funded by
the European Union with the same name. The state of each
function is a square matrix of real values and the processing
consists of multiplying it by the input argument and providing
the result as output. The size N of the input/output vector,
and hence the matrix, is 500 and all the states and inputs are
initialized with random values in [0, 1]. The chain is triggered
by a client every time it receives the final output of the chain
execution on the previous round, thus each app generates
a rate of invocation as high as allowed by the underlying
platform/hardware. We ran the experiments on two types of
embedded devices: a Raspberry Pi 3 and an NVIDIA Jetson
NX. Each experiment lasted 10 seconds after an initial warm-
up period (of variable size) and was repeated 10 times. The
error bars report low (0.025) and high (0.975) quantiles of
measured data.

In Figure 7 we show the invocation rate with an increasing
number of apps. The NVIDIA Jetson NX curve lies above the
Raspberry Pi 3 because it has a more powerful CPU. With
both hardware, the curve increases from 1 app to 2 apps,
because the former is not sufficient to saturate the CPUs on
the host node. However, the invocation rate afterward remains
stable, even with 30 apps, corresponding to 120 concurrent
runners (see Figure 6) in the same embedded device, with
no noticeable drop in aggregated performance. This confirms
that stateful FaaS runners with WebAssembly can scale with
negligible overhead until high load levels, relative to the node
capabilities. This assumption is used in the next section.

III. SYSTEM MODEL

We now define a mathematical model to estimate the energy
consumed in a time horizon T for executing the applications
that enter/leave the system during that period. The model
is intended to be used to evaluate high-level deployment
strategies and run-time orchestration policies and, as such,

1https://github.com/edgeless-project/edgeless

it is not intended to provide quantitatively accurate results,
but rather qualitative guidelines to drive algorithm design and
high-level resource provisioning.

We assume the workload is made of applications (apps
for short) that enter and leave the system dynamically at
given times t↓a and t↑a, for app a. An app a consists of some
functions (or tasks) arranged in a directed dependency graph
Ga(Va, Ea). Each vertex v ∈ Va is a task that depends on its
predecessors (incoming edges) and produces output towards its
successors (outgoing edges). The amount of data exchanged
when task u calls its successor task v is dauv , in bits. Without
loss of generality, to have a more compact notation, we assume
that the invocation rate is common for all the tasks within app
a and equal to λa. Task v has an internal state of size sav ,
in bits, and a processing request equal to rav , in fractions
of CPU. An example of a dependency graph is illustrated in
Figure 8.

In the following, we consider the system as dynamic,
characterized by a series of discrete events happening at time
tk ∈ {t1, . . . , tN}, where tN is the end of the period of interest
and the other events correspond to an application entering or
leaving the system. Between two consecutive events the power
consumption remains stable (in a statistical sense) and we can
characterize its average value through two step-wise functions,
which are constant from time tk until the next event tk+1:
α(tk) is number of edge nodes used at time tk to serve the
active applications, where each node has a processing capacity
C, in fractions of CPU; βa(tk) is the average network traffic
consumed by application a in the unit of time. We assume
that the power consumption of an edge node is binary: if it
is used, i.e., it serves at least one stateless FaaS or hosts at
least one stateful FaaS runner, then it consumes a peak power;
otherwise, if it is unused, it does not consume power at all.
Such an assumption does not capture the features offered by
state-of-the-art power management technologies, which allow
nodes to be in multiple states (active, idle, sleep, etc.) and to
scale the frequency of individual CPU cores, but contributes to
keeping the model simpler and compact. In our future work,
we will expand to more sophisticated models.

Regardless of the deployment strategy, we can then define
the total energy consumed in the system as follows:

E =

N−1∑
k=1

[
PN · α(tk)

+ EB

∑
a∈A

βa(tk)I(t↓a ≤ tk ≤ t↑a)

]
(tk+1 − tk),

(1)

where PN is the power consumption of an edge node and EB

is the per-bit network transfer energy, and I(·) ∈ {0, 1} is an
indicator function equal to 1 if and only if the condition is true,
which in Equation (1) means that the app a is active at time
tk. In this work, we focus on energy consumption assuming
that there are no constraints on the availability of processing
and network resources. In other words, we assume that the
system can accommodate all the incoming requests, hence no

https://github.com/edgeless-project/edgeless
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Fig. 8. Application model. An app a consists of functions arranged in a
graph. If function u calls function v then an edge exists, and its weight dauv
is the amount of data exchanged. Each function v has a state of size sav .

admission control is needed. The notation used in the paper
is summarized in Table I.

In the following we define α(tk) and βa(tk) separately for
stateless FaaS (Section III-A) and stateful FaaS (Section III-B),
based on the considerations in Section II above.

A. Stateless FaaS

For stateless FaaS we adopt a simple model that captures
well its distinguishing features. Specifically, we assume that
the number of active nodes needed at time tk is the minimum
possible, i.e.:

TABLE I
NOTATION USED IN THE PAPER. THE LAST TWO ROWS ARE USED ONLY

WITH STATEFUL FAAS.

Parameter Description Unit
Ga(Va, Ea) Task graph of app a. Va is the set of tasks, Ea

represents the invocation dependencies
λa Invocation rate of app a s−1

rav Processing request of task v at app a CPU
sav State size of task v at app a b
dauv Invocation data size from task u to v at app a b
t↓a Arrival time of app a s
t↑a Leaving time of app a s
A Set of all the applications in the period of interest

A(tk) Set of applications active at time tk
α(tk) Number of edge nodes active at time tk
βa(tk) Traffic rate of app a at time tk b/s
PN Power consumption of a node W
EB Per-bit network transfer energy J/b
E Total energy consumed in the period of interest J
C Processing capacity of a node CPU
tk Time instant of the k-th event s
∆ Defragmentation interval s

xav(tk) Mapping function indicating the index of the
node to which task v of app a is allocated at
time tk

α(tk) =

 1

C

∑
a∈A(tk)

∑
v∈Va

rav

 , (2)

where A(tk) is set of applications active at time tk. The inner
summation in Equation (2) is the total processing request of
app a, which is then summed over all the applications and,
finally, divided by the edge node capacity C. This implicitly
assumes that no edge effects exist in horizontal scalability and
the broker layer can distribute the load appropriately among
the multiple task instances. On the other hand, the traffic rate
of app a at time tk is given by:

βa(tk) = λa

∑
v∈Va

sav +
∑

(u,v)∈Ea

duav

 , (3)

which is the sum of the traffic generated for the state access
(first term) and function invocation between each node and its
successors (second term), in the unit of time, as given by the
invocation rate λa.



B. Stateful FaaS

The model with stateful FaaS is more complicated because
it depends on how tasks are assigned to edge nodes for three
reasons. First, function invocation only consumes network
resources if the two tasks are not assigned to the same edge
(see Figure 5). Second, since a stateful FaaS runner cannot be
split/recombined, assigning the active tasks to available nodes
to minimize the number of nodes used is akin to the bin-
packing problem, which is known to be NP-complete [20].
Finally, as active apps leave the system, fragmentation occurs
(a term inspired by the similar effect in the memory manage-
ment process of operating systems), i.e., edge nodes are only
partially allocated: this is sub-optimal for energy consumption.
To solve this problem, we foresee a defragmentation process
to happen periodically, with the period equal to ∆, which is
a system configuration parameter: during defragmentation, the
active apps are rearranged to reduce the number of edge nodes
needed, thus saving energy in the future. However, this process
consumes energy because the state of some runners may have
to be migrated from one node to another (see Figure 4). In
Section IV we will study the trade-off in choosing the value
of ∆.

Now we introduce a last bit of notation: let xav(tk) be
a variable that indicates what edge node (using an arbitrary
indexing scheme) hosts the runner for the task v of app a at
time tk. In time intervals where the app a is inactive, i.e.,
before it enters or after it leaves the system, the variable is
undefined. The values of xav(tk) must be determined through
two orchestration decision-making algorithms: i) when an app
enters the system, the algorithm chooses where to deploy
each of its tasks, by either selecting edge nodes already
active (hosting other tasks) with sufficient residual capacity or
activating new edge nodes; ii) upon defragmentation, the tasks
of active applications can be migrated to other edge nodes to
reduce the total number of the active ones. Determining an
optimal policy for either of these decision processes has the
same complexity as finding an optimal allocation for a bin-
packing problem, as already mentioned. To keep the focus
of this work compact, we defer the study of those problems
to future work and we propose to use the following simple
heuristic based on the best-fit policy, which is widely employed
and has bounded performance [21].
Stateful|best-fit algorithm:

– When an app enters the system, for each task we select the
active node that hosts one of the predecessor tasks, if any
(to save network traffic for function invocation). Otherwise,
we select the active node that leaves the smallest residual
capacity, if any, breaking ties arbitrarily. Otherwise, we
deploy the task on an inactive node.

– Upon defragmentation, we apply the above algorithm policy
to all the active apps, in arbitrary order.

We then derive the number of active nodes at time tk as:

α(tk) =
∣∣∣{xav(tk),∀a ∈ A(tk),∀v ∈ Va

}∣∣∣, (4)

where | · | indicates the cardinality of the corresponding set,
and the traffic rate of app a at time tk is:

βa(tk) =
1

tk+1 − tk

∑
v∈Va

sav · I (xav(tk) ̸= xav(tk−1))+

λa

∑
(u,v)∈Ea

dauv · I (xau(tk) ̸= xav(tk)) ,

(5)
where the first addend takes into account the state migration if
the task was moved since the previous time event (by design,
this can happen only during the defragmentation procedure)
and the second addend considers the network traffic for
function invocation, only if the task u and its successor v
do not belong to the same node (see Figure 5, again).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance, in terms of
energy consumption, of the stateless vs. stateful approaches,
as modeled in Section III, indicated as stateless|min-nodes and
stateful|best-fit, respectively. For reference purposes, we also
include two alternatives: stateless|max-balancing, as implied
by the name, refers to a stateless FaaS system that seeks to
maximize load balancing [22]; stateful|random is a variation of
the stateful policy in Section III-B, where there is no periodic
defragmentation and the tasks of incoming apps are assigned
to edge nodes at random, respecting the maximum capacity
C, and a new node is made active only if there is none with
sufficient residual capacity. For full reproducibility of results,
the source code of the simulator and the scripts and artifacts
are available publicly as open-source on GitHub2.
Methodology and assumptions The workload is created
following the model in [23], which is inspired by real traces
made available by Alibaba and broadly used in the literature,
tuned as follows: the arrival and lifetime of apps follow a
Poisson distribution, with average 1 s and 60 s, respectively;
both the state size sav and the data invocation size dauv are
derived from the memory requirements produced by [23], by
applying multiplicative factors called S (state) and D (data
invocation), where D is always set to 100, which corresponds
to the range [2, 303] kB, and S is expressed through the ratio
S/D, which is 100 by default, in which case S would be in
the range [0.2, 30.3] MB. The invocation rate is λa = 5/s and
the capacity of a node C is set to 1000, which is sufficient
to host any single task, whose requested capacity is drawn
from an empiric distribution with a maximum value of 800.
The edge node power consumption was set to 100 W, which
is typical for a small device such as an Intel NUC; estimating
the network consumption is much more complicated because
it depends not only on the devices but also on the overall
networking infrastructure: based on the results from a recent
study [24], we have experimented with different values in
the range [0.05, 5] µW/b/s. Each experiment lasted 1 day of
simulated time and was repeated 1000 times; the plots show

2https://github.com/ccicconetti/stateful-faas-sim (experiment 001)

https://github.com/ccicconetti/stateful-faas-sim
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the average value across the repetitions with a symbol and the
low (0.025) and high (0.975) quantiles as error bars. All the
values above are to be considered unless specified otherwise.
Defragmentation period In Figure 9 we show α and β with
different combinations of ∆ and the S/D ratio, only with
stateful|best-fit. β is affected significantly by both S/D and
∆: when the state is heavier (S/D = 100), the network traffic
is very high with small values of ∆ (note the log scale on
the y-axis) because frequent migrations are expensive. This
effect is much less prominent with S/D = 10 and S/D = 1,
because of the smaller state sizes compared to the invocation
data sizes. With increasing ∆, all the curves initially decrease
and, then, increase again until they converge to the same
value (as the defragmentation becomes more sporadic, the
state size becomes less important). The minima of the curves
depend on the specific value of S/D. The number of active
nodes α is independent of S/D and always increases with
∆. Key message: The choice of ∆ incurs a trade-off in the
energy consumption of computation vs. network. Devising an
algorithm to set ∆ at run-time is a possible spin-off research
activity. In the following, we set the value to 120 s, i.e., twice
the average app lifetime, which appears as a reasonable trade-
off between network vs. processing consumption.
Energy per bit-rate In Figure 10 we show the energy
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consumption with increasing EB while keeping PN = 100 W.
Key message: The energy consumption increase with a higher
per-bit-rate cost is higher with a stateless deployment, espe-
cially in the max-balancing flavor, and is very modest with a
stateful deployment. In the latter case, we can see that the best-
fit policy reduces energy consumption by about 2 compared
to random, for all values of EB . In the following, we only
consider the two extremes of the EB range.
State size The impact of the state size, compared to the data
invocation size, is exposed in Figure 11, with low per-bit-rate
energy cost, i.e., EB = 0.05 µW/b/s. A stateless deployment,
with a min-nodes policy, is the best option only for S/D ≤ 10
and only by a small margin compared to stateful|best-fit. On
the other hand, as S/D increases significantly above 10, state-
less deployment becomes significantly more energy-hungry,
due to the cost of accessing the state upon each function
invocation. With S/D > 100, stateless is outperformed even
by stateful|random. The max-balancing policy follows the
same trend as min-nodes and is always above the latter, though
the gap reduces slightly as S/D increases. Key message: From
an energy consumption perspective, stateful deployments are
almost insensitive to the size of the applications’ states.
System load In Figure 12 we report the measurements ob-
tained with min/max EB values for stateful policies (with
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Fig. 13. Simulations: energy consumption vs. node capacity.

stateless, the values with maximum EB are well above the
plot y-axis range) when increasing the application lifetime
from 15 s to 120 s. As expected, all the curves increase
with the load. Key message: Both stateful|best-fit curves lie
at the bottom and gain an increasing margin compared to
all the others as the load increases. The second-best option
is stateless|min-nodes (only with minimum EB), while the
stateless|max-balancing performs worst.
Node capacity Finally, in Figure 13 we show the energy
consumption (only due to processing) with increasing C from
800 to 4000. All the curves decrease because with increasing
C the number of nodes required decreases, as well, while
we keep the power consumption per node PN constant. It
is interesting to note that the curves are almost overlapping
in pairs. At the bottom (less energy consumed) we find
the two systems described in Section III: in fact, they both
aim at reducing the edge computing infrastructure energy
consumption. Stateless has a slight gain compared to stateful,
but it is more than compensated by a lower energy efficiency
from the network traffic perspective. At the top (more energy
consumed), the two comparison systems show similar perfor-
mance, which can be explained by the fact that they both try to
spread as much as possible the load among the active nodes:
stateless|max-balancing does this explicitly, stateful|random
implicitly. Key message: A stateful deployment, with a best-
fit allocation strategy, can be as efficient as a stateless one
despite the fragmentation issue.

V. RELATED WORK

A. Edge computing support in 5G systems

The Multi-access Cloud Computing (MEC) concept was
defined by ETSI [25] to offer a standardized framework
to include cloud-computing capabilities to edge networking
elements, such as base stations, access points, switches, and
routers. Several papers have investigated system architecture
and technology enablers to build MEC-enabled shared pools
of computing resources at the network edge, especially within
cellular networks [26]. More recently, the 3GPP has extended
the reference design of MEC systems to support the deploy-
ment of edge computing applications within 5G and post-5G

networks [27], by defining the underlying layer that facilitates
communication between application clients (ACs) running on
the user terminal and application servers (EAS) hosted by an
EDN. Furthermore, the 3GPP technical specifications delineate
the capabilities for edge server discovery, configuration, and
management, encompassing service continuity and the expo-
sure of networking properties. In addition to standardization
activities, research studies have investigated possible reference
architectures for EDN. For instance, the problem of optimal
placement of edge servers in a 5G network is addressed in [28]
to maximize the total revenues or to minimize the deployment
costs throughout a planning horizon [29]. In [30], the authors
argue that an EDN can improve the utilization of computing
resources by cooperating with a regional cloud through a
wholesale and buyback pricing scheme.

B. Application deployment

The authors in the recent survey [31] identified resource
allocation and scheduling as an open research challenge to
unlock the full potential of IoT applications at the edge.
In [15], the authors argue that most AI applications are
stateful and propose an Integer Linear Programming (ILP)
to minimize the deployment cost, defined as a combination
of processing, transmission, and storage, which then solve
via a heuristic algorithm with provable approximation ratio,
also putting forward an online learning version under un-
certain data volumes and network delays. Even if we start
from the same observation, our work proceeds in a different
direction of estimating the energy consumption, which is
very important in EDNs, under the assumption of a simpler
orchestration policy that allows us to focus more specifically
on the comparison between stateless and stateful frameworks.
On the other hand, in [32] the authors put under the spotlight
the trade-off between energy consumption and latency, which
is addressed through a distributed algorithm that optimizes
at the same time the task offloading decisions, local CPU
frequency, and approximate computing accuracy, and is proven
to be effective in a small-scale testbed and with numerical
experiments. A similar problem has been studied in [33],
though the decision-making algorithm uses deep reinforcement
learning. However, these papers assume a microservice, not
serverless, architecture: this makes the contribution orthogonal
to ours, albeit possibly relevant for further investigation.
Serverless is instead the specific subject of [34], where the
authors design a FaaS platform for the edge-cloud continuum,
called Serverledge, supporting vertical/horizontal computation
offloading. The solution proposed is a possible implementation
of the stateless deployment option discussed in this paper,
without state management.

VI. CONCLUSIONS

In this paper, we have studied two alternative deployment
options to realize stateful FaaS in EDNs. The first relies on
stateful FaaS runners interconnected via a service mesh of bro-
kers to dispatch function invocations, where the applications’
state resides on an external service accessed as on demand.



The second one exploits WebAssembly to assign one runner
to each application instance, state included, thus directly
realizing stateful FaaS. Results from a testbed with small
devices showed no noticeable drop in performance with several
runners. We have then defined models to estimate the energy
consumption of processing and network traffic for the two
deployment options, with known statistical characterization of
the applications (arrival process, DAG task dependencies, and
state/invocation sizes). For stateful FaaS, we have proposed
a simple, yet effective, heuristic for allocating tasks to nodes
upon application arrival and periodically to reduce fragmenta-
tion of edge node resources. Extensive simulations have shown
that stateful FaaS is more efficient than stateless FaaS, except
for minimal applications’ state or negligible network energy
consumption compared to processing.
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